Skip to main content

Advertisement

Log in

The possible role of mesodermal growth factors in the formation of endoderm inXenopus laevis

  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Abstract

We have raised a monoclonal antibody, 4G6, against gut manually isolated from stage 42Xenopus laevis embryos. It is specific for endoderm and recognises an epitope that is first expressed at stage 19 and which persists throughout subsequent development. The antibody maintains gut specificity through metamorphosis and into adulthood. The epitope is conserved in the mouse, where it is also found in the gut. Isolated vegetal poles fromXenopus blastula stage embryos express the epitope autonomously after culturing to the appropriate stage. This shows that certain aspects of endoderm differentiation do not require germ layer interactions. Animal cap cells from stage 9 blastulae cultured in the presence of the mesodermal growth factors FGF, XTC-MIF and PIF form both endodermal and mesodermal tissues, assessed by the binding of tissue-specific monoclonal antibodies. Endoderm is typically found in those caps which form intermediate and ventral forms of mesoderm, that is muscle and lateral plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albano RM, Godsave SF, Huylebroek D, van Nimmen K, Isaacs HV, Slack JMW, Smith JC (1990) A mesoderm inducing factor produced by WEHI-3 murine myelomonocytic leukaemia cells is activin A. Development 110:435–441

    PubMed  CAS  Google Scholar 

  • Asashima M, Uchiyama H, Nakano H, Eto Y, Ejima D, Sugina H, Davids M, Plessow S, Born J, Hoppe P, Tiedemann H, Tiedemann H (1991) Mechanis Dev 34:135–141

    Article  CAS  Google Scholar 

  • Amaya E, Musci TJ, Kirschner MW (1990) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66:257–270

    Article  Google Scholar 

  • Dale L, Slack JMW (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99:527–551

    PubMed  CAS  Google Scholar 

  • Dreyer C, Hansen P (1981) The use of polyacrylamide as an embedding medium for immunohistochemical studies of embryonic tissues. Stain Technology 56:287–293

    PubMed  Google Scholar 

  • Gillespie LL, Paterno GD, Slack JMW (1989) Analysis of competence: Receptors for fibroblast growth factor in early Xenopus embryos. Development 106:91–102

    Google Scholar 

  • Green JBA, Howes G, Symes K, Cooke J, Smith JC (1990) The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF. Development 108:173–183

    PubMed  CAS  Google Scholar 

  • Grunz H (1970) Abhängigkeit der Kompetenz des Amphibien-Ektoderms von der Proteinsynthese. Roux Arch Dev Biol 165:91–102

    Article  Google Scholar 

  • Grunz H (1983) Change in the differentiation pattern of Xenopus laevis ectoderm by variation of the incubation time and concentration of vegetalising factor. Roux Arch Dev Biol 192:130–137

    Article  Google Scholar 

  • Grunz H, McKeehan WL, Knochel W, Born J, Tiedemann H, Tiedemann H (1988) Induction of mesodermal tissues by acidic and basic heparin binding growth factors. Cell Differ 22:183–190

    Article  PubMed  CAS  Google Scholar 

  • Heasman J, Snape A, Smith JC, Holwill S, Wylie CC (1985) Cell lineage and commitment in early amphibian development. Phil Trans Roy Soc B 312:145–152

    Google Scholar 

  • Jones EA, Woodland HR (1986) Development of the ectoderm in Xenopus laevis: the definition of a monoclonal antibody to an epidermal marker. Cell 44:344–355

    Article  Google Scholar 

  • Jones EA, Woodland HR (1989) Spacial aspects of neural induction in Xenopus. Development 107:785–791

    PubMed  CAS  Google Scholar 

  • Kimelman D, Kirschner M (1987) Synergistic induction of mesoderm by FGF and TGF and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51:369–377

    Article  Google Scholar 

  • Knochel W, Born J, Loppnow-Blinde B, Tiedemann H, McKeehan WL, Grunz H (1987) Mesoderm inducing factors: their possible relationship to heparin binding growth factors and transforming growth factor β. Naturwissenschaften 74:604–606

    Article  PubMed  CAS  Google Scholar 

  • Kocher-Becker U, Tiedemann H (1971) Induction of mesodermal and endodermal structures and primordial germ cells in Triturus ectoderm by a vegetalising factor from chick embryos. Nature 233:655–666

    Article  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  • Minuth M, Grunz H (1980) The formation of mesodermal derivatives after induction with vegetalising factor depends on secondary cell interactions. Cell Differentiation 9:229–238

    Article  PubMed  CAS  Google Scholar 

  • Moody SA (1987) Fates of the blastomeres of the 32-cell stage Xenopus embryo. Devl Biol 122:300–319

    Article  CAS  Google Scholar 

  • Nakamura O, Takasaki H, Mizohata T (1970) Differentiation during cleavage in Xenopus laevis I. Acquisition of self-differentiation capacity of the dorsal marginal zone. Proc Jpn Acad 46:694–699

    Google Scholar 

  • Nieuwkoop PD (1969) The formation of the mesoderm in Urodelean amphibians I. Induction by the endoderm. Roux Arch Dev Biol 162:342–373

    Google Scholar 

  • Nieuwkoop PD (1977) Origin and establishment of embryonic polar axes in amphibian development. Cur Top Dev Biol 11:115–132

    Article  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). 2nd ed. Amsterdam, North Holland

    Google Scholar 

  • Okada TS (1953) Rô1e of the mesoderm in the differentiation of endodermal organs. Mem Coll Sci Univ Kyoto 20:157–162

    Google Scholar 

  • Okada TS (1957) The pluripotency of the pharyngeal primordium in urodelan neurulae. J Embryol Exp Morph 5:438–448

    Google Scholar 

  • Rosa F, Roberts AB, Danielpour D, Dart LL, Sporn MB, Dawid IB (1988) Mesoderm induction in amphibians: The role of the TGF-β2-like factors. Science 239:783–785

    PubMed  CAS  Google Scholar 

  • Scharf SR, Vincent J-P, Gerhart JC (1984) Axis determination in the Xenopus egg. In: Davidson E, Firtel R (eds) Molecular biology of development. UCLA Symp Mol Cell Biol, pp 51–73

  • Slack JMW, Darlington BG, Heath JK, Godsave SF (1987) Mesoderm induction in early Xenopus embryos by heparin binding growth factors. Nature 326:197–200

    Article  PubMed  CAS  Google Scholar 

  • Slack JMW, Forman D (1980) An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos. J Embryol Exp Morphol 56:283–299

    PubMed  CAS  Google Scholar 

  • Slack JMW, Isaacs H (1989) Presence of basic fibroblast growth factor in the early Xenopus embryo. Development 105:147–153

    Google Scholar 

  • Smith JC (1987) A mesoderm inducing factor is produced by a Xenopus cell line. Development 99:3–14

    PubMed  CAS  Google Scholar 

  • Smith JC (1989) Mesoderm induction and mesoderm inducing factors in early amphibian development. Development 105:665–677

    PubMed  CAS  Google Scholar 

  • Smith JC, Yagoob M, Symes K (1988) Purification partial characterisation and biological effects of the XTC mesoderm-inducing factor. Development 103:591–600

    PubMed  CAS  Google Scholar 

  • Smith JC, Price BMJ, van Nimmen K, Huylebroek D (1990) Identification of a potent Xenopus mesoderm inducing factor as a homologue of activin A. Nature 345:729–731

    Article  PubMed  CAS  Google Scholar 

  • Takata C, Yamada T (1960) Endodermal tissues developed from the isolated news ectoderm under the influence of guinea pig bone marrow. Embryologica 5:8–20

    Article  Google Scholar 

  • Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial and anterior structures. Cell 63:485–493

    Article  PubMed  CAS  Google Scholar 

  • Tiedemann H, Lottspeich F, Davids M, Knochel G, Hoppe P, Tiedemann H (1992) The vegetalising Factor: a member of the evolutionarily conserved activin family. FEBS Lett 300:123–126

    Article  PubMed  CAS  Google Scholar 

  • Wylie CC, Snape A, Heasman J, Smith JC (1987) Vegetal pole cells and commitment to form endoderm. Devl Biol 119:496–502

    Article  CAS  Google Scholar 

  • Yamada T (1940) Beeinflussung der Differenzierungsleistung des isolierten Mesoderms durch zugefügtes Chorda- und Neuralmaterial. Okajimas Fol Anat Jpn 19:131–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: E.A. Jones

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, E.A., Abel, M.H. & Woodland, H.R. The possible role of mesodermal growth factors in the formation of endoderm inXenopus laevis . Roux's Arch Dev Biol 202, 233–239 (1993). https://doi.org/10.1007/BF02427884

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427884

Key words

Navigation