Journal of Neuro-Oncology

, 9:115 | Cite as

Aldehyde dehydrogenase activity in xenografted human brain tumor in nude mice. Preliminary results in human glioma biopsies

  • Véronique Quemener
  • Jacques-Philippe Moulinoux
  • Christian Martin
  • Françoise Darcel
  • Yvon Guegan
  • Jean Faivre
  • Gerald A. Quash
Laboratory Investigation


ALDH activity measured fluorimetrically using a high concentration of aliphatic aldehyde as substrate was studied in human glioblastomas grafted in nude mice. Compared with normal brain, ALDH activity is significantly increased in malignant glioma tissue, especially in the cytosolic subcellular fraction. Correlatively, in comparison with normal brain tissue, MDA levels were significantly reduced in whole homogenates and in cytosolic fractions of xenografted glioblastoma tissue. Preliminary results concerning human malignant glioma biopsies are in good agreement with our experimental data. In view of previous works, these results suggest a relationship between alterations in ALDH iso-enzymes activities and cytosolic aldehyde concentrations with respect to normal or tumoral cell growth.

Key words

aldehyde dehydrogenase (ALDH) malondialdehyde (MDA) malignant glioma brain tumors subcellular fractionation 


  1. 1.
    Erwin VG, Dietrich RA: Brain aldehyde dehydrogenase. Localization, purification, and properties. J Biol Chem 241: 3533–3539, 1966PubMedGoogle Scholar
  2. 2.
    Hellström E, Tottmar O: Effects of aldehyde dehydrogenase inhibitors on enzymes involved in the metabolism of biogenic aldehydes in rat liver and brain. Biochem Pharmacol 31: 3899–3905, 1982PubMedCrossRefGoogle Scholar
  3. 3.
    Duncan RJS, Tipton KF: The purification and properties of the NAD-linked aldehyde dehydrogenase from pig brain. Eur J Biochem 22: 257–262, 1971PubMedCrossRefGoogle Scholar
  4. 4.
    Koivula T, Turner AJ, Huttunen M, Koivusalo M: Subcellular and perisynaptic distribution of rat brain aldehyde dehydrogenase activity. J Neurochem 36: 1893–1897, 1981PubMedGoogle Scholar
  5. 5.
    Inoue K, Lindros KO: Subcellular distribution of human brain aldehyde dehydrogenase. J Neurochem 38: 884–888, 1982PubMedGoogle Scholar
  6. 6.
    Weiner H, Ardelt B: Distribution and properties of aldehyde dehydrogenase in regions of rat brain. J Neurochem 42: 109–115, 1984PubMedGoogle Scholar
  7. 7.
    Lindahl R: Aldehyde dehydrogenase in 2-acetamidofluorene-induced rat hepatomas. Ontogeny and evidence that the new isoenzymes are not due to normal gene derepression. Biochem J 164: 119–123, 1977PubMedGoogle Scholar
  8. 8.
    Harvey WK, Lindahl R: Activity of various aldehyde-metabolizing enzymes in chemically-induced rat hepatomas. Biochem Pharmacol 31: 1153–1155, 1982PubMedCrossRefGoogle Scholar
  9. 9.
    Lindahl R: Subeellular distribution and properties of aldehyde dehydrogenase from 2-Acetylaminofluorene-induced rat hepatomas. Biochem J 183: 55–64, 1979PubMedGoogle Scholar
  10. 10.
    Canuto RA, Garcea R, Biocca M, Pascale R, Pirisi L, Feo F: The subcellular distribution and properties of aldehyde dehydrogenase of hepatoma AH-130. Eur J Cancer Clin Oncol 19: 389–400, 1983PubMedCrossRefGoogle Scholar
  11. 11.
    Doutheau A, Goré J, Quash GA: French Pat. 83-12863, 1983 and U.S. Pat. 63-7495, 1984Google Scholar
  12. 12.
    Ogier G, Chantepie J, Quash G, Doutheau A, Gord J, Marion C: The effect of a novel inhibitor of aldehyde dehydrogenase on viral replication. Biochem Pharmacol 38: 1335–1343, 1989PubMedCrossRefGoogle Scholar
  13. 13.
    Perin A, Sessa A, Ciaranfi E: Carcinostatic effect of aliphatic aldehydes and aldehyde dehydrogenase activity in Ehrlich carcinoma, Sarcoma 180, and Yoshida AH 130 hepatoma. Cancer Res 38: 2180–2184, 1978PubMedGoogle Scholar
  14. 14.
    Nilsson GE, Tottmar O: Biogenic aldehydes in brain: on their preparation and reactions with rat brain tissue. J Neurochem 48: 1566–1572, 1987PubMedGoogle Scholar
  15. 15.
    Moulinoux J-Ph, Quemener V, Le Calvé M, Chatel M, Darcel F: Polyamines in human brain tumors. A correlative study between tumor, cerebrospinal fluid and red blood cell free polyamine levels. J Neurooncol 2: 153–158, 1984PubMedCrossRefGoogle Scholar
  16. 16.
    Scalabrino G, Ferioli ME, Modena D, Puerari M, Luccarelli G: Degrees of malignancy in human primary CNS tumors: ODC levels as better indicators than adenosyl-methionine decarboxylase levels. JNCI 68: 751–754, 1982PubMedGoogle Scholar
  17. 17.
    Bachrach U, Abzug S, Bekierkunst A: Cytotoxic effect of oxidized spermine in Ehrlich ascites cells. Biochem Biophys Acta 134: 174–181, 1967Google Scholar
  18. 18.
    Bachrach U: Copper amine oxidases and amines as regulators of cellular processus. In: Mondovi (ed) Structure and functions of amine oxidases. CRC Press Florida, 1985, pp 5–20Google Scholar
  19. 19.
    Quash G, Ripoll H, Gazzolo L, Doutheau A, Saba A, Goré J: Malondialdehyde production from spermine by homogenates of normal and transformed cells. Biochimie 69: 101–108, 1987PubMedCrossRefGoogle Scholar
  20. 20.
    Siu GM, Draper HH: Metabolism of malonaldehydein vivo andin vitro. Lipids 17: 349–355, 1982PubMedGoogle Scholar
  21. 21.
    Bird RP, Draper HH: Effect of malonaldehyde and acetaldehyde on cultured mammalian cells: growth, morphology, and synthesis of macromolecule. J Toxicol Environ Health 6: 811–823, 1980PubMedCrossRefGoogle Scholar
  22. 22.
    Burger RM, Berkowitz AR, Seisach J, Horwitz SB: Origin of malondialdehyde from DNA degraded by Fe(II) Bleomycin. J Biol Chem 255: 11832–11838, 1980PubMedGoogle Scholar
  23. 23.
    Bigner DD, Bigner SH, Ponte'n J, Westermark B, Mahaley MS, Ruoslahti E, Herschman H, Eng LF, Whikstrand CJ: Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol 40: 201–229, 1981PubMedGoogle Scholar
  24. 24.
    Shapiro WR, Basler GA, Chernik NL, Posner JB: Human brain tumor transplantation into nude mice. JNCI 62: 447–453, 1979PubMedGoogle Scholar
  25. 25.
    Yagi K: A simple fluorometric assay for lipoperoxide blood plasma. Biochem Med 15: 212–216, 1976PubMedCrossRefGoogle Scholar
  26. 26.
    Tabor CW, Tabor H, Bachrach U: Identification of the aminoaldehydes produced by the oxidation of spermine and spermidine with purified plasma amine oxidase. J Biol Chem 239: 2194–2203, 1964PubMedGoogle Scholar
  27. 27.
    Argento-Céru MP, Autuori F: Localization of diamine oxidase in animal tissues. In: Mondovi (ed), Structure and functions of amine oxidases. CRC Press, Florida, 1985, pp 89–104Google Scholar
  28. 28.
    Mondovi B, Pierluigi R: Animal intracellular amine oxidases. In: Mondovi (ed) Structure and functions of amine oxidases. CRC Press, Florida, 1985, pp 63–76Google Scholar
  29. 29.
    Höltta E: Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry 16: 91–100, 1977PubMedCrossRefGoogle Scholar
  30. 30.
    Shaff RE, Beaven MA: Turnover and synthesis of diamine oxidase in rat tissues. Studies with heparin and cycloheximide. Biochem Pharmacol 25: 1057–1067, 1976PubMedCrossRefGoogle Scholar
  31. 31.
    Desiderio MA, Sessa A, Perin A: Polyamine and diamine oxidase activity in maternal, embryonal and fetal tissues of rat after chronic ethanol consumption. BBRC 142: 843–848, 1987PubMedGoogle Scholar
  32. 32.
    Hjelle JJ, Petersen DR: Metabolism of malondialdehyde by rat liver aldehyde dehydrogenase. Toxicol Appl Pharmacol 70: 57–66, 1983PubMedCrossRefGoogle Scholar
  33. 33.
    Guidotti GG, Loreti L, Ciaranfi E: Studies on the antitumor activity of aliphatic aldehydes I. Europ J Cancer 1: 23–32, 1965Google Scholar
  34. 34.
    Loreti L, Ferioli ME, Gazzola GC, Guidotti GG: Studies on the antitumor activity of aliphatic aldehydes III. Europ J Cancer 7: 281–284, 1971Google Scholar
  35. 35.
    Perin A, Sessa A, Scalabrino G, Arnaboldi A, Ciaranfi E: Studies on the antitumor activity of aliphatic aldehyde V. Europ J Cancer 8: 111–119, 1972Google Scholar
  36. 36.
    Sessa A, Scalabrino G, Arnaboldi A, Perin A: Effects of aliphatic aldehyde metabolism on protein synthesis and thiol compounds in rat liver and hepatoma induced by 4-dimethyl aminoazobenzene. Cancer Res 38: 2170–2176, 1977Google Scholar
  37. 37.
    Heby O: Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19: 1–20, 1981PubMedGoogle Scholar
  38. 38.
    Pegg AE: Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res 48: 759–774, 1988PubMedGoogle Scholar
  39. 39.
    Smith CJ, Hussain JI, Allen JC: Inhibition of cell proliferation by polyamines does not depend on the cytotoxicity of acrolein. Biochem Soc Trans 13: 326–329, 1985PubMedGoogle Scholar
  40. 40.
    Marton LJ, Edwards MS, Levin VA, Lubich WP, Wilson CB: CSF polyamines: a new and important means of monitoring patients with medulloblastoma. Cancer 47: 757–760, 1981PubMedGoogle Scholar
  41. 41.
    Hilton J: Role of aldehyde dehydrogenase in cyclophosphamide resistant L1210 leukemia. Cancer Res 44: 5156–5160, 1984PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Véronique Quemener
    • 1
  • Jacques-Philippe Moulinoux
    • 1
  • Christian Martin
    • 1
  • Françoise Darcel
    • 2
  • Yvon Guegan
    • 3
  • Jean Faivre
    • 4
  • Gerald A. Quash
  1. 1.Department of Cell BiologyCentre Hospitalier Universitaire de RennesRennes-CedexFrance
  2. 2.Department of NeuropathologyCentre Hospitalier Universitaire de RennesRennes-CedexFrance
  3. 3.Department of NeurosurgeryCentre Hospitalier Universitaire de RennesRennes-CedexFrance
  4. 4.I. N. S. E. R. M. U-51Unité de Virologie Fondamentale et AppliquéeLyon-CedexFrance

Personalised recommendations