Skip to main content
Log in

Estimates of operator polynomials in the space Lp with respect to the multiplier norm

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to the determination of an analog of J, von Neumann's inequality for the space Lp.The fundamental result of the paper is: If T is an absolute contraction in the space Lp(X,F,μ) (i.e., |T|L1≤1) and |T|L∞≤1) then for every polynomial ϕ one has

where S is the shift operator in the space. On the basis of this theorem, one finds a theorem on substitutions in the space of multipliers. One gives applications of the inequality (1) to the weighted shift operators in the space It turns out that under some natural restrictions on the weight, inequality (1) becomes an equality for such operators. One also presents a proof of J. von Neumann's inequality based on the approximation of a contraction in a Hilbert space by unitary operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. J. von Neumann, “Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes,” Math. Nachr.,4, 258–281 (1951).

    MATH  MathSciNet  Google Scholar 

  2. B. Sz.-Nagy and C. Foias, Harmonie Analysis of Operators on Hilbert Space, North-Holland, Amsterdam (1970).

    Google Scholar 

  3. E. Nelson, “The distinguished boundary of the unit operator ball,” Proc. Am. Math. Soc.,12, No. 6, 994–995 (1961).

    Article  MATH  Google Scholar 

  4. C. Foias, “Sur certains théorèmes de J. von Neumann concernant les ensembles spectraux,” Acta Sci. Math.,18, 15–20 (1957).

    MATH  MathSciNet  Google Scholar 

  5. N. K. Nikol'skii, “Five problems on invariant subspaces,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,23, 115–127 (1971).

    MATH  Google Scholar 

  6. P. R. Halmos, A. Hilbert Space Problem Book, Van Nostrand, Princeton (1967).

    MATH  Google Scholar 

  7. V. V. Peller, “An analog of J. von.Neumenn's inequality for the space Lp,” Dokl. Akad. Nauk SSSR,231, No. 3, 539–542 (1976).

    MATH  MathSciNet  Google Scholar 

  8. N. K. Nikol'skii, “Spaces and algebras of Toeplitz matrices operating in ℓp,” Sib, Mat. Zh.,7, No. 1, 118–126 (1966).

    Article  MATH  Google Scholar 

  9. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs (1962).

    MATH  Google Scholar 

  10. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence (1969).

    MATH  Google Scholar 

  11. A. Zygmund, Trigonometric Series, Vol. II, Cambridge Univ. Press (1959).

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 65, pp. 133–148, 1976.

The author wishes to express his thanks to N. K. Nikol'skii for suggesting the problem and for his interest in the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peller, V.V. Estimates of operator polynomials in the space Lp with respect to the multiplier norm. J Math Sci 16, 1139–1149 (1981). https://doi.org/10.1007/BF02427722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427722

Keywords

Navigation