Skip to main content
Log in

A terminal ballistics application of transmission electron microscopy: The anatomy of a bullet hole

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel technique was devised for the selected area observation of residual microstructures in the deformation zones and the detached cap sections of 0.22 calibre bullet holes in thin sheets and laminate thicknesses ranging from 0.03 to 0.54 mm of 304 stainless steel and Inconel 600 by bright- and dark-field transmission electron microscopy. Microhardness measurements over the detached cap and petals, extending radially into the undeformed material, indicated the zone of action to be confined to a region bounded by the deviation of the impact zone from the plane of the plate. This feature was confirmed by electron microscope observations which indicated no defects beyond the bounds of the zone of action so defined. Residual microhardness was observed to increase from the radial bound of the zone of action toward the axis of projectile motion, with maximum hardness values roughly twice the undeformed sheet hardness observed in the petal edges and the detached caps. Dislocation densities were observed to increase correspondingly over this range (∼ 106 to 1011 cm−2), with deformation twins occurring in the petal edges and the detached caps of both materials. An analytical treatment of the specific ballistic perforation examined in this investigation based on the plastic stretching of the target zone of action, fracture and detachment of a cap, and the subsequent petalling of the crater as perforation commences, indicated an absence of high pressure shock effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Rinehart andJ. Pearson, “The Behavior of Metals Under Impulsive Loads” (ASM, Cleveland, 1954).

    Google Scholar 

  2. W. Goldsmith,Appl. Mech. Rev. 16 (1963) 855.

    Google Scholar 

  3. W. Goldsmith andP. T. Lyman Jr,J. Appl. Mech. Trans. ASME Series E,27 (1960) 717.

    Google Scholar 

  4. G. I. Taylor,Quart. J. Mech. and Appl. Math. 1 (1948) 103.

    Google Scholar 

  5. A. J. Wang andH. G. Hopkins,J. Mech. and Phys. of Solids 3 (1954) 22.

    Article  Google Scholar 

  6. M. Zaid andB. Paul,J. Franklin Inst. 264 (1957) 117.

    Article  Google Scholar 

  7. Idem, ibid. 268 (1959) 24.

    Article  Google Scholar 

  8. J. Nishiwaki,J. Phys. Soc. Japan 6 (1951) 374.

    Article  Google Scholar 

  9. W. Goldsmith, T. W. Liu, andS. Chulay,Exp. Mech. 5 (1965) 385.

    Article  Google Scholar 

  10. H. A. Bethe, Frankford Arsenal Rpt. No. UN-41-5-23 (1941).

  11. W. T. Thompson,J. Appl. Phys. 26 (1955) 80.

    Article  Google Scholar 

  12. C. J. Maiden,Phil. Mag. 3 (1958) 1413.

    Google Scholar 

  13. J. W. Craggs,Proc. Roy. Soc. A63 (1962) 369.

    Google Scholar 

  14. A. B. J. Clark, W. F. Hassel, andJ. M. Krafft,Naval Res. Lab. Memo Rpt. 150, May (1959).

  15. Elements of Armament Engineering, US Army Material Command, AMCP 706-107, September (1963).

  16. M. C. Inman, L. E. Murr, andM. F. Rose,Adv. Electron Metal (ASTM)STP 396 (1966) 39.

    Google Scholar 

  17. L. E. Murr andM. F. Rose,Phil. Mag. 18 (1968) 281.

    CAS  Google Scholar 

  18. F. I. Grace, M. C. Inman, andL. E. Murr,Brit. J. Appl. Phys. 1 (1968) 1437.

    Google Scholar 

  19. L. E. Murr andJ. V. Foltz,J. Appl. Phys. 40 (1969) 3796.

    Article  CAS  Google Scholar 

  20. L. E. Murr andA. B. Draper,Proc. Electron Microscopy Soc. Amer. 26th Anniversary Volume (1968) 442.

    Google Scholar 

  21. L. E. Murr,Appl. Materials Res. 3 (1964) 153.

    CAS  Google Scholar 

  22. R. K. Ham,Phil. Mag. 6 (1961) 1183.

    Google Scholar 

  23. P. B. Hirsch andJ. W. Steeds, “Relation Between the Structure and Mechanical Properties of Metals” NPL Symposium No. 15 (1964). p. 39; see also Table 17.1, p. 423 ofP. B. Hirsch,et al, “Electron Microscopy of Thin Crystals” (Butterworths, London, 1965).

    Google Scholar 

  24. A. B. Draper, L. E. Murr, andB. F. Turkovich, to be published.

  25. C. Hwang,J. Appl. Mchs. Trans. ASME Series E,26 (1959) 594.

    Google Scholar 

  26. M. J. Manjoine,J. Appl. Mechs. 11 (1944) 211.

    Google Scholar 

  27. A. S. Appleton andJ. S. Waddington,Phil. Mag. 12 (1965) 273.

    CAS  Google Scholar 

  28. E. E. Banks,J. Inst. Met. 96 (1968) 375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murr, L.E., Foltz, J.V. A terminal ballistics application of transmission electron microscopy: The anatomy of a bullet hole. J Mater Sci 5, 63–81 (1970). https://doi.org/10.1007/BF02427184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427184

Keywords

Navigation