Journal of Materials Science

, Volume 12, Issue 6, pp 1272–1278 | Cite as

Subcritical crack growth in silicon carbide

  • K. D. McHenry
  • R. E. Tressler


Crack growth behaviour in two types of commercially available silicon carbide was examined from 600 to 850° C in ambient atmospheres containing oxygen, water vapour, and sulphur dioxide. The double-torsion specimen was used in the incremental displacement rate mode to yield (K 1,V) relations. The direct-bonded material exhibited unstable crack propagation and arrest behaviour which was not measureably affected by temperature variations or the corrosive environments. The hot-pressed material exhibited subcritical crack growth similar to the three regions of the classical (K 1,V) diagram. Oxidation of the silicon carbide is suggested to be the mechanism of stress corrosion operating in these environments.


Dioxide Carbide Water Vapour Temperature Variation Silicon Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Wiederhorn, A. G. Evans andD. E. Roberts, in “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, Proceedings of the Symposium on the Fracture Mechanics of Ceramics, University Park, Pennsylvania, (1973), 829.Google Scholar
  2. 2.
    S. M. Wiederhorn,J. Amer. Ceram. Soc. 50 (1967) 407.Google Scholar
  3. 3.
    S. M. Wiederhorn andL. H. Boltz,ibid. 53 (1970) 543.Google Scholar
  4. 4.
    A. G. Evans,J. Mater. Sci. 7 (1972) 1137.CrossRefGoogle Scholar
  5. 5.
    D. P. Williams andA. G. Evans,J. Testing and Evaluation 1 (1973) 264.CrossRefGoogle Scholar
  6. 6.
    K. D. McHenry, T. M. Yonushonis andR. E. tressler,J. Amera. Ceram. Soc. 59 (1976).Google Scholar
  7. 7.
    A. G. Evans andF. F. Lange,J. Mater. Sci. 10 (1975) 1659.CrossRefGoogle Scholar
  8. 8.
    G. G. Trantina andC. A. Johnson,J. Amer. Ceram. Soc. 58 (1975) 344.Google Scholar
  9. 9.
    J. E. Restall andC. R. Gostelow,Proc. Brit. Ceram. Soc. 22 (1973) 89.Google Scholar
  10. 10.
    M. L. Torti, R. A. Alliegro, M. E. Washburn, D. W. Richerson andG. Q. Weaver,ibid. 22 (1973) 129.Google Scholar
  11. 11.
    F. F. Lange,J. Amer. Ceram. Soc. 53 (1970) 290.Google Scholar
  12. 12.
    J. W. Edington, D. J. Rowcliffe andJ. L. Henshall,P.M.I. 7 (1975) 82.Google Scholar
  13. 13.
    D. W. Richerson,Amer. Ceram. Soc. Bull. 52 (1973) 560.Google Scholar
  14. 14.
    G. Q. Weaver andB. A. Olson, in “Silicon Carbide — 1973”, edited by r. C. Marshall, J. W. Faust, Jun. and C. E. Ryan, Proceedings of the 3rd International Conference on Silicon Carbide, Miami Beach, Florida (1973) p. 367.Google Scholar
  15. 15.
    M. G. Rogers, in “Special Ceramics — 5”, edited by P. Popper, Proceedings of the 5th Symposium on Special Ceramics (British Ceramic Research Association, Stoke-on-Trent, 1970 p. 87.Google Scholar
  16. 16.
    S. C. Singhal, in “Ceramics for High Performance Applications”, edited by J. J. Burke, A. E. Gorum and R. N. Katz, Proceedings of the 2nd Army Materials Technology Conference, Hyannsis, Mass. (1973) p. 533.Google Scholar
  17. 17.
    K. M. Nair, W. B. White andR. Roy,J. Amer. Ceram. Soc. 48 (1965) 52.Google Scholar
  18. 18.
    E. Fitzer andR. Ebi, in “Silicon Carbide — 1973”, edited by R. C. Marshall, J. W. Faust, and C. E. Ryan, Proceedings of the 3rd International Conference on Silicon Carbide, Miami Beach, Florida (1973) p. 320.Google Scholar
  19. 19.
    S. Lin,J. Amer. Ceram. Soc. 58 (1975) 271.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1977

Authors and Affiliations

  • K. D. McHenry
    • 1
  • R. E. Tressler
    • 1
  1. 1.Department of Materials ScienceThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations