Skip to main content
Log in

Radionuclide targeting and dosimetry at the microscopic level: the role of microautoradiography

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The understanding of localisation mechanisms and microdosimetry of diagnostic and therapeutic radiopharmaceuticals depends on knowledge of their biodistribution at the microscopic level (cellular and subcellular) in the target tissues. Various methods have been advanced for obtaining information about this microdistribution: subcellular fractionation, secondary ion mass spectrometry imaging, microprobe elemental analysis in the electron microscope, and microautoradiography. This review compares these approaches, and discusses in detail the methodology of microautoradiography (the most generally useful approach) with imaging and therapy radionuclides. Literature examples of applications of microautoradiography in nuclear medicine are reviewed, and the future potential contribution of the techniques is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kassis AI, Adelstein SJ, Haydock C, Sastry KSR, McElvany KD, Welch MI. Lethality of Auger electrons from the decay of bromine-77 in the DNA of mammalian cells.Radiat Res 1982; 90: 362–373.

    PubMed  CAS  Google Scholar 

  2. DeSombre ER, Hughes A, Shafii B, et al. Estrogen receptor-directed radiotoxicity with Auger electron-emitting nuclides: E-17α-[123I]iodovinyl-11β-methoxyestradiol and CHO-ER cells. In: Howell RW, Narra VR, Sastry KSR, Rao DV (eds)Biophysical aspects of Auger processes. AAPM Symposium Series No. 8. 1992: 352–371.

  3. Kassis AI. 5-123I/125I-iodo-2′-deoxyuridine for cancer diagnosis and therapy.J Nucl Med Allied Sci 1990; 34: 299–303.

    PubMed  CAS  Google Scholar 

  4. Humm JL, Macklis RM, Bump K, Cobb LM, Chin LM. Internal dosimetry using data derived from autoradiographs.J Nucl Med 1993; 34: 1811–1817.

    PubMed  CAS  Google Scholar 

  5. Humm JL, Roeske JC, Fisher DR, Chen GTY. Microdosimetric concepts in radioimmunotherapy.Med Phys 1993; 20: 543–550.

    Article  Google Scholar 

  6. Makrigiorgos GM, Adelstein SJ, Kassis AI. Limitations on conventional internal dosimetry at the cellular level.J Nucl Med 1989; 30: 1856–1864.

    PubMed  CAS  Google Scholar 

  7. Farragi M, Gardin I, de Labriolle-Vaylet C, Moretti J-L, Bok B. The influence of tracer localisation on the electron dose rate delivered to the nucleus.J Nucl Med 1994; 35: 113–119.

    Google Scholar 

  8. Goddu SM, Howell RW, Rao DV Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments.J Nucl Med 1994; 35: 303–316.

    PubMed  CAS  Google Scholar 

  9. Howell RW. The MIRD schema: from organ to cellular dimensions.J Nucl Med 1994; 35: 531–533.

    PubMed  CAS  Google Scholar 

  10. Humm JL, Cobb LM. Nonuniformity of tumor dose in radioimmunotherapy.J Nucl Med 1990; 31: 75–83.

    PubMed  CAS  Google Scholar 

  11. Britton K, Highlights of the annual meeting of the European Association of Nuclear Medicine, Lausanne 1993:Eur J Nucl Med 1994; 21: 159–169.

    Article  PubMed  CAS  Google Scholar 

  12. Yonekura Y, Brill AB, Som P, Bennett GW, Fand I. Quantitative autoradiography with radiopharmaceuticals. Part 1. Digital film-analysis system by videodensitometry: concise communication.J Nucl Med 1983; 24: 231–237.

    PubMed  CAS  Google Scholar 

  13. Som P, Yonekura Y, Oster ZH, et al. Quantitative autoradiography with radiopharmaceuticals. Part 2. Applications in radiopharmaceutical research: concise communication.J Nucl Med 1983; 24: 238–244.

    PubMed  CAS  Google Scholar 

  14. Ullberg S. The technique of whole body autoradiography. Science Tools (special issue). Stockholm: LKB-Produkter AB.

  15. Wilkin GP, Hudson AL, Hill DR, Bowery NG. Autoradiographic localisation of GABA-B receptors in rat cerebellum.Nature 1981; 294: 584–587.

    Article  PubMed  CAS  Google Scholar 

  16. Fand I, Sharkey RM, Goldenberg DM. Use of whole body autoradiography in cancer targeting with radiolabeled antibodies.Cancer Res (Suppl) 1990; 50: 885–891.

    Google Scholar 

  17. Willis KW, Martinez DA, Hedley-White ET, Davis MA, Judy PF, Treves S. Renal localisation of99mTc-stannous glucoheptonate and99mTc-stannous dimercaptosuccinate in the rat by frozen section autoradiography.Radiat Res 1977; 69: 475–488.

    PubMed  CAS  Google Scholar 

  18. Yorke ED, Williams LE, Demidecki AJ, Heidorn DB, Roberson PL, Wessels BW. Multicellular dosimetry for beta-emitting radionuclides: autoradiography, thermoluminescent dosimetry, and three-dimensional dose calculations.Med Phys 1993; 20: 543–550.

    Article  PubMed  CAS  Google Scholar 

  19. Griffith MH, Yorke ED, Wessels BW, DeNardo GL, Neacy WP. Direct dose confirmation of quantitative autoradiography with micro-TLD measurements for radioimmunotherapy.J Nucl Med 1988; 29: 1795–1809.

    PubMed  CAS  Google Scholar 

  20. Burns MS. Biological microanalysis by secondary ion mass spectrometry — status and prospects.Ultramicroscopy 1988; 24: 269–282.

    Article  PubMed  CAS  Google Scholar 

  21. Rogers AW.Techniques of autoradiography, 3rd edn. New York: Elsevier North Holland Biomedical Press, 1979.

    Google Scholar 

  22. Vanlic Razumenic N, Petrovic J. Biochemical studies of the renal radiopharmaceutical compound dimercaptosuccinate. I. Subcellular localization of99mTc-DMS complex in the rat kidney in vivo.Eur J Nucl Med 1981; 6: 169–172.

    Article  PubMed  CAS  Google Scholar 

  23. Vanlic Razumenic N, Petrovic J. Biochemical studies of the renal radiopharmaceutical compound dimercaptosuccinate. II. Subcellular localization of99mTc-DMS complex in the rat kidney in vivo.Eur J Nucl Med 1982; 7: 304–307.

    PubMed  CAS  Google Scholar 

  24. Thakur ML, Segal AW, Louis L, Welch MJ, Hopkins J, Peters TJ. Indium-111-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils.J Nucl Med 1977; 18: 1020–1024.

    Google Scholar 

  25. Mousa SA, Williams SJ, Sands H. Characterization of in vivo chemistry of cations in the heart.J Nucl Med 1987; 28: 1351–1357.

    PubMed  CAS  Google Scholar 

  26. Chin ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile)technetium in cultured mouse fibroblasts.J Nucl Med 1990; 31: 1646–1653.

    Google Scholar 

  27. Crane P, Laliberte R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium99m-sestamibi myocardial retention.Eur J Nucl Med 1993; 20: 20–25.

    Article  PubMed  CAS  Google Scholar 

  28. Fourre C, Halpern S, Jeusset J, Cleve J, Fragu P. Significance of secondary ion mass spectrometry microscopy for technetium-99m mapping in leukocytes.J Nucl Med 1992; 33: 2162–2166.

    PubMed  CAS  Google Scholar 

  29. Clete J, Halpern S, Fourre C, et al. SIMS microscopy imaging of the intratumor distribution of metaiodobenzylguanidine in the human SK-N-SH neuroblastoma cell line xenografted into nude mice.J Nucl Med 1993; 34: 1565–1570.

    Google Scholar 

  30. Trebbia P, Bonnet N. EELS elemental mapping with unconventional methods. 1. Theoretical basis — image analysis with multivariate statistics and entropy concepts.Ultramicroscopy 1990; 34: 165–178.

    Article  PubMed  CAS  Google Scholar 

  31. Piwnica-Worms D, Kronauge JF, Davison A, Jones AG, Ingram P, LeFurgey M, Lieberman M. Mitochondrial localisation of Tc-MIBI in cultured chick heart cells by electron probe X-ray microanalysis [abstract].J Nucl Med 1990; 31: 748.

    Google Scholar 

  32. Baker JRJ.Autoradiography: a comprehensive overview. Oxford University Press/Royal Microscopical Society, 1989.

  33. Le Pape A, Guillemart A. Autoradiographic comparison of96Tc-pyrophosphate and45Ca bone uptake.Eur J Nucl Med 1982; 7: 127–129

    Article  PubMed  Google Scholar 

  34. Guillemart A, Besnard J-C, Le Pape A, Galy G, Fetissoff F. Skeletal uptake of pyrophosphate labelled with technetium-95m and technetium-96, as evaluated by autoradiography.J Nucl Med 1978; 19: 895–899.

    PubMed  CAS  Google Scholar 

  35. Berger MJ. Distribution of absorbed dose around point sources of electrons and beta-particles in water and other media. MIRD Pamphlet no. 7.J Nucl Med 1971; 12(Suppl): 5–23.

    CAS  Google Scholar 

  36. Morstin K, Kopec M, Olko P, Schmitz T, Feinendegen LE. Microdosimetry of tritium.Health Phys 1993; 65: 648–656.

    Article  PubMed  CAS  Google Scholar 

  37. Puncher MRB, Blower PJ, Pickett RD. Microautoradiography as a tool for studying localization of radiopharmaceuticals at the histological level [abstract].J Nucl Biol Med 1993; 37: 159–160.

    Google Scholar 

  38. Morrell EM, Tompkins RG, Fischman AJ, et al. Autoradiographic method for quantitation of radiolabeled proteins in tissues using indium-111.J Nucl Med 1989; 30: 1538–1545.

    PubMed  CAS  Google Scholar 

  39. Kubota R, Yamada SY, Kubota K, Ishiwata K, Ido T. Microautoradiographic method to study [18F]FDG uptake in mouse tissue.Nucl Med Biol 1993; 20: 183–188.

    Article  PubMed  CAS  Google Scholar 

  40. Raylman RR, Wahl RL. Magnetically enhanced radionuclide therapy.J Nucl Med 1994; 35: 157–163.

    PubMed  CAS  Google Scholar 

  41. Meyer M, Anderson C, Kabalka G, Campbell S. Autoradiographic demonstration of magnetic reduction of positron range [abstract].J Nucl Med 1994; 35: 162.

    Google Scholar 

  42. Yamada S, Kubota R, Kubota K, Ishiwata I, Ido T. Efficiency of grain production and latent image fading in F-18 micro-autoradiography.Tohoku J Exp Med 1992; 167: 181–184.

    PubMed  CAS  Google Scholar 

  43. Kawamoto T. Light microscope autoradiography for study of early changes in the distribution of water-soluble materials.J Histochem Cytochem 1990; 38: 1805–1814.

    PubMed  CAS  Google Scholar 

  44. Stirling CE, Kinter WB. High-resolution autoradiography of galactose-3H accumulation in rings of hamster intestine.J Cell Biol 1967; 35: 585–604.

    Article  PubMed  CAS  Google Scholar 

  45. Stirling CE, Schneider AJ, Wong M-D, Kinter WB. Quantitative radioautography of sugar transport in intestinal biopsies from normal humans and a patient with glucose-galactose malabsorption.J Clin Invest 1972; 51: 438–451.

    Article  PubMed  CAS  Google Scholar 

  46. Stumpf WE, Roth LJ. Dry-mounting high-resolution autoradiography. In: Roth LJ, ed.Isotopes in experimental pharmacology. Chicago: University of Chicago Press; 1965; 133–143.

    Google Scholar 

  47. Appleton TC. Autoradiography of soluble labelled compounds.J R Microsc Soc 1964; 83: 277–281.

    PubMed  CAS  Google Scholar 

  48. Puncher MRB, Blower PJ. Labelling of leucocytes with colloidal Tc-99m-SnF2: an investigation of the labelling access by autoradiography.Eur J Nucl Med 1995; in press.

  49. Flitney E. Autoradiography. In: Bancroft JD, Stevens A, eds.Theory and practice of histological techniques, 3rd edn. New York: Churchill Livingstone; 1990: 645–665.

    Google Scholar 

  50. Caro LG, Van Tubergen RP. High resolution autoradiography. 1. Methods.J Cell Biol 1962; 15: 173–188.

    Article  PubMed  CAS  Google Scholar 

  51. Kawamoto T, Shimizu M. A method for preparing wholebody sections suitable for autoradiographic, histological and histochemical studies.Stain Technol 1986; 61: 169.

    PubMed  CAS  Google Scholar 

  52. Harris WV, Salpeter MM. Soluble compound electron microscope (EM) autoradiography: a resolution source to test redistribution of soluble tritiated compounds during processing.J Histochem Cytochem 1983; 31: 495–500.

    PubMed  CAS  Google Scholar 

  53. Baker JRJ, Appleton TC. A technique for electron microscopic autoradiography (and X-ray microanalysis) of diffusible substances using freeze-dried fresh frozen sections.J Microsc 1976; 108: 307–315.

    CAS  Google Scholar 

  54. Wirquin E, Masse R, Meignan M, Galle P. Microautoradiography of y-emitters: interest of latensification process.Int J Appl Radiat Isot 1984; 35: 489–493.

    Article  PubMed  CAS  Google Scholar 

  55. Kubota R, Yamada S, Ishiwata K, Kubota K, Ido T. Active melanogenesis in non-S-phase melanocytes in B16 melanomas in vivo investigated by double-tracer microautoradiography with18F-fluorodopa and3H-thymidine.Br J Cancer 1992; 66: 614–618.

    PubMed  CAS  Google Scholar 

  56. Schnitzer JJ, Morrell EM, Colton CK, Smith KA, Stemerman MB. Absolute quantitative autoradiography of low concentrations of125I-labeled proteins in arterial tissue.J Histochem Cytochem 1987; 35: 1439–1450.

    PubMed  CAS  Google Scholar 

  57. Puncher MRB, Blower PJ. Autoradiography and density gradient separation of Tc-99m-exametazime (HMPAO) labelled leucocytes reveals selectivity for eosinophils.Eur J Nucl Med 1994; 21: 1175–1182.

    Article  PubMed  CAS  Google Scholar 

  58. Salpeter MM, Bachman L, Salpeter EE. Resolution in electron microscope autoradiography.J Cell Biol 1969; 41: 1–20.

    Article  PubMed  CAS  Google Scholar 

  59. Salpeter MM, Salpeter EE. Resolution in electron microscope autoradiography II, carbon 14.J Cell Biol 1971; 50: 324–332.

    Article  PubMed  CAS  Google Scholar 

  60. Blackett NM, Parry DM. A new method of analysing electron microscope autoradiographs using hypothetical grain distributions.J Cell Biol 1973; 57: 9–15.

    Article  PubMed  CAS  Google Scholar 

  61. Blackett NM, Parry DM. A simplified method of “hypothetical grain” analysis of electron microscope autoradiographs.J Histochem Cytochem 1977; 25: 206–214.

    PubMed  CAS  Google Scholar 

  62. Hnatowich DJ, Mardirossian G, Rusckowski M, et al. Pharmacokinetics of the FO23C5 anti-CEA antibody fragment labelled with99Tcm and111In: a comparison in patients.Nucl Med Commun 1993; 14: 52–63.

    PubMed  CAS  Google Scholar 

  63. Puncher MRB, Blower PJ. Sub-cellular In-111 distribution and microdosimetry in In-111-oxine labelled leucocytes by autoradiography [abstract].Eur J Nucl Med 1994; 21: 875.

    Article  Google Scholar 

  64. Wagstaff J. Lymphocyte migration studies in man. In: Thakur M, ed.Radiolabeled cellular blood elements (NATO ASI series). New York: Plenum Press; 1985: 319–342.

    Google Scholar 

  65. Makrigiorgos GM, Ito S, Baranowska-Kortylewicz J, et al. Inhomogeneous deposition of radiopharmaceuticals at the cellular level: experimental evidence and dosimetric implications.J Nucl Med 1990; 31: 1358–1363.

    PubMed  CAS  Google Scholar 

  66. Gardin I, Colas-Linhart N, Petiet A, Bok B. Dosimetry at the cellular level of Kupffer cells after technetium-99m-sulphur colloid injection.J Nucl Med 1992; 33: 380–384.

    PubMed  CAS  Google Scholar 

  67. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-l8-fluorodeoxyglucose uptake.J Nucl Med 1994; 35: 104–112.

    PubMed  CAS  Google Scholar 

  68. Morra B, Ferrero V, Bussi M, Pacchioni D, Cerrato M, Bussolati G. Peri- and intra-tumoral macrophage infiltration in laryngeal carcinoma. An immunohistochemical study.Acta Otolaryngol Stockh 1991; 111: 444–448.

    PubMed  CAS  Google Scholar 

  69. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Active and passive mechanisms of [fluorine- 18]fluorodeoxyglucose uptake by proliferating and prenecrotic cancer cells in vivo: a microautoradiographic study.J Nucl Med 1994; 35: 1067–1075.

    PubMed  CAS  Google Scholar 

  70. Kubota R, Yamada S, Ishiwata K, Tada M, Ido T, Kubota K. Cellular accumulation of18F-labelled boronophenylalanine depending on DNA synthesis and melanin incorporation: a double tracer microautoradiographic study of B16 melanomas in vivo.Br J Cancer 1993; 67: 701–705.

    PubMed  CAS  Google Scholar 

  71. Mountz JM, Raymond PA, McKeever PE, et al. Specific localization of thallium-201 in human high-grade astrocytoma by microautoradiography.Cancer Res 1989; 49: 4053–4056.

    PubMed  CAS  Google Scholar 

  72. Kassis AI, van den Abbeele AD, Wen PYC et al. Specific uptake of the Auger emitting thymidine analog 5-(123I/125I)iodo-2′deoxyuridine in rat brain tumors: diagnostic and therapeutic implications in humans.Cancer Res 1990; 50: 5199–5203.

    PubMed  CAS  Google Scholar 

  73. Van Leeuwen-Stok AE, Drager AM, Schuurhuis GJ, Platier AWJ, Teule GJJ, Huijgens PC. Gallium-67 in the human lymphoid cell line U-715: uptake, cytotoxicity and intracellular localization.Int J Radiat Biol 1993; 64: 749–759.

    PubMed  Google Scholar 

  74. Mills BG, Masuoka LS, Graham CC Jr, Singer FR, Waxman AD. Gallium-67-citrate localization in osteoclast nuclei of Paget's disease of bone.J Nucl Med 1988; 29: 1083–1087.

    PubMed  CAS  Google Scholar 

  75. Link EM, Brown I, Carpenter RN, Mitchell JS. Uptake and therapeutic effectiveness of I-125 and At-211 methylene blue for pigmented melanoma in an animal model system.Cancer Res 1989; 49: 4332–4337.

    PubMed  CAS  Google Scholar 

  76. Brown RS, Sisson JC, Fisher SJ, Wahl RL. Electron microscopic autoradiographic assessment of the intracellular distribution of I-125 MIBG in human neuroblastoma xenografts.J Nucl Med 1992; 34: 1565–1570.

    Google Scholar 

  77. Gaze MN, Huxham IM, Mairs RJ, Barrett A. Intracellular localization of metaiodobenzylguanidine in human neuroblastoma cells by electron spectroscopic imaging.Int J Cancer 1991; 47: 875–880.

    PubMed  CAS  Google Scholar 

  78. Christensen SB, Krogsgaard OW. Localization of Tc-99m MDP in epiphyseal growth plates of rats.J Nucl Med 1981; 22: 237–245.

    PubMed  CAS  Google Scholar 

  79. Einhorn TA, Vigorita VJ, Aaron A. Localization of technetium-99m methylene diphosphonate in bone using microautoradiography.J Orthop Res 1986; 4: 180–187.

    Article  PubMed  CAS  Google Scholar 

  80. Visser WJ, Savelkoul TJF. Localization of (99mTc) in bone by means of autoradiography.Biol Trace Element Res 1987; 13: 393–395.

    Google Scholar 

  81. Tilden RL, Jackson J, Enneking WF, DeLand FH, McVey JT.99mTc-polyphosphate: histological localization in human femurs by autoradiography.J Nucl Med 1973; 14; 576–578.

    PubMed  CAS  Google Scholar 

  82. Fogelman I. Skeletal uptake of diphosponate: a review.Eur J Nucl Med 1980; 5: 473–476.

    PubMed  CAS  Google Scholar 

  83. Waxman AD, McKee D, Seimsen JK, Singer FR. Gallium scanning in Paget's disease of bone: effect of calcitonin.Am J Roentgenol 1980; 134: 303–306.

    CAS  Google Scholar 

  84. de Labriolle-Vaylet C, Colas-Linhart N, Petiet A, Bok B. Leucocytes marques a l′HMPAO-99mTc: etudes fonctionnelles et microautoradiographiques.J Med Nucl Biophy 1990; 14: 137–141.

    Google Scholar 

  85. Barbu M, Colas-Linhart N, Bok B. Technetium99m autoradiography of labelled white cells.Acta Haematol 1984; 71: 13–17.

    Article  PubMed  CAS  Google Scholar 

  86. Puncher MRB, Blower PJ. Autoradiography and density gradient separation of99Tcm-exametazime (HMPAO)-labelled leukocytes reveal selectivity for eosinophils [abstract].Nucl Med Commun 1994; 15: 243.

    Google Scholar 

  87. Peters AM, Danpure HJ, Osman S, et al. Clinical experience with Tc-99m Hexamethylpropyleneamineoxime for labelling leucocytes and imaging inflammation.Lancet 1986; ii: 946–949.

    Article  Google Scholar 

  88. Spry CJF.Eosinophils: a comprehensive review and guide to the scientific and medical literature. Oxford: Oxford University Press, 1988.

    Google Scholar 

  89. Colas-Linhart N, Perianin A, Petiet A, Bretillon A, Bok B. Sur une methode de microautoradiographie permettant l'etude de la migration des leucocytes marques par le technetium-99m.CR Acad Sci Paris 1985; 300: 413–416.

    CAS  Google Scholar 

  90. Davis HH, II, Senior RM, Griffin GL, Kuhn C, III.111Indium-labeled human alveolar macrophages and monocytes: function and ultrastructure.J Immunol Methods 1980; 36: 99–107.

    Article  PubMed  Google Scholar 

  91. Peters AM, Saverymuttu SH, Lavender JP. Granulocyte kinetics. In: Thakur M, ed.Radiolabeled cellular blood elements (NATO ASI series). New York: Plenum Press; 1985: 285–303.

    Google Scholar 

  92. Hanna R, Braun T, Levendel A, Lomas F. Radiochemistry and biostability of autologous leucocytes labelled with Tc-99mstannous colloid in whole blood.Eur J Nucl Med 1984; 9: 216–219.

    Article  PubMed  CAS  Google Scholar 

  93. Mock BH, English D. Leukocyte labeling with technetium-99m tin colloids.J Nucl Med 1987; 28: 1471–1477.

    PubMed  CAS  Google Scholar 

  94. Radpharm Scientific leucocyte labelling kit, package insert, 1994. Radpharm Scientific, PO Box 223, Kippax ACT, Australia 2615.

  95. Tsan M-E Mechanism of gallium-67 accumulation in inflammatory lesions.J Nucl Med 1985; 26: 88–92.

    PubMed  CAS  Google Scholar 

  96. Ando A, Nitta K, Ando I, et al. Mechanism of gallium 67 accumulation in inflammatory tissue.Eur J Nucl Med 1990; 17: 21–27.

    Article  PubMed  CAS  Google Scholar 

  97. Gelrud G, Arsenau JC, Johnston GS. Gallium-67 localization in experimental and clinical abscesses.Clin Res 1973; 21: 600.

    Google Scholar 

  98. Puncher MRB. PhD thesis, University of Kent, 1994.

  99. Yee CA, Lee HB, Blaufox MD. Tc-99m DMSA renal uptake: influence of biochemical and physiologic factors.J Nucl Med 1981;22:1054–1058.

    PubMed  CAS  Google Scholar 

  100. Provoost AP, van Aken M. The effect of DMSA loading on the renal handling of Tc-99m in rats.Uremia Invest 1985-6; 9: 147–150.

    PubMed  Google Scholar 

  101. Peters AM, Jones DH, Evans K, Gordon I. Two routes to Tc99m-DMSA uptake in the renal cortical tubular cell.Eur J Nucl Med 1988; 14: 555–561.

    Article  PubMed  CAS  Google Scholar 

  102. Hindie E, Colas-Linhart N, Petiet A, Bok B. Microautoradiographic study of technetium-99m colloid uptake by the rat liver.J Nucl Med 1988; 29: 1118–1121.

    PubMed  CAS  Google Scholar 

  103. Chaudhuri TK, Evans TC, Chaudhuri TK. Autoradiographic studies of distribution in the liver of198Au and99mTc-sulfur colloids.Radiology 1973; 109: 633–637.

    CAS  Google Scholar 

  104. Tomoike H, Nakamura M, Watanabe K, Inou T, Kurozumi T, Tanaka K. Tc-99m PPi localization in acute myocardial infarction: application of macro- and microautoradiography.J Nucl Med 1982; 23: 84–85

    PubMed  CAS  Google Scholar 

  105. Dewanjee MK. Autoradiography of live and dead mammalian cells with99mTc-tetracyline.J Nucl Med 1975; 16: 315–317.

    PubMed  CAS  Google Scholar 

  106. Rao DV, Govelitz GF, Sastry KSR. Radiotoxicity of thallium201 in mouse testes: inadequacy of conventional dosimetry.J Nucl Med 1983; 24: 145–153.

    PubMed  CAS  Google Scholar 

  107. Sharma HL, Jackson NC, Jackson H. testicular localization of radionuclides and potential hazard [abstract].Eur J Nucl Med 1992; 19: 610.

    Google Scholar 

  108. Jonsson B-A, Strand S-E, Emanuelsson H, Larsson B. Tissue, cellular, and sub-cellular distribution of indium radionuclides in the rat. In: Howell RW, Narra VR, Sastry KSR, Rao DV (eds). Biophysical aspects of Auger processes.AAPM Symposium Series No. 8. 1992: 249–272.

  109. Ahuja S, Schiller S, Ernst H. An autoradiography study of postoperatively labelled thyroid tissue and iodine storage.Eur J Nucl Med 1991; 18: 791–795.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puncher, M.R.B., Blower, P.J. Radionuclide targeting and dosimetry at the microscopic level: the role of microautoradiography. Eur J Nucl Med 21, 1347–1365 (1994). https://doi.org/10.1007/BF02426701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02426701

Key words

Navigation