Biophysics of structure and mechanism

, Volume 4, Issue 3, pp 209–222 | Cite as

Tension transients in fibrillar muscle fibres as affected by stretch-dependent binding of AMP-PNP: A teinochemical effect?

  • H. J. Kuhn


The recovery in tension after release of a fibrillar muscle preparation as well as the fall in tension after restretch was found to be greater in presence of AMP-PNP than in its absence (rigor). The effect of AMP-PNP was concentration-dependent with an optimum at 0.1 mM corresponding to the dissociation constant of AMP-PNP from the myosin heads. This evidence supports the validity of the teinochemical principle which predicts a stretch-dependent AMP-PNP binding. The stiffness calculated per cross bridge was similar to that found by Huxley and Simmons (1971). It was further calculated that only 15% of the cross bridges are in a force-maintaining state in rigor.

Key words

ATP analogue Insect fibrillar muscle Stiffness per cross bridge Quick release-recovery Mechano-chemistry of muscle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, R. H., Leech, A. R.: Persistance of adenylate kinase and other enzymes in glycerol extracted muscle. Pflügers Arch.344, 233–243 (1973)CrossRefGoogle Scholar
  2. Barrington Leigh, J., Holmes, K. C., Mannherz, H. G., Rosenbaum, G., Eckstein, F., Goody, R.: Effects of ATP analogs on the low-angle X-ray diffraction pattern of insect flight muscle. Cold Spr. Harb. Symp. quant. Biol.37, 443–447 (1973)Google Scholar
  3. Beinbrech, G., Kuhn, H. J., Herzig, J. W., Rüegg, J. C.: Evidence for two attached myosin cross bridge states of different potential energy. Cytobiology12, 385–396 (1976)Google Scholar
  4. Feldhaus, P., Fröhlich, T., Goody, R. S., Isakov, M., Schirmer, R. H.: Synthetic inhibitors of adenylate. kinases in the assays for ATPases and phosphokinases. Europ. J. Biochem.57, 197–204 (1975)CrossRefGoogle Scholar
  5. Ford, L. E., Huxley, A. F., Simmons, R. M.: Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J. Physiol. (Lond.)269, 441–515 (1977)Google Scholar
  6. Goody, R. S., Holmes, K. C., Mannherz, H. G., Barrington Leigh, J., Rosenbaum, G.: X-ray diffraction studies of insect flight muscle with ATP analogues. Biophys. J.15, 687–704 (1975)Google Scholar
  7. Goody, R. S., Barrington Leigh, J., Mannherz, H. G., Tregear, R. T., Rosenbaum, G.: X-ray titration of bindingΒ,γ-imido-ATP to myosin in insect flight muscle. Nature (Lond.)262, 613–614 (1976)CrossRefADSGoogle Scholar
  8. Güth, K., Kuhn, H. J.: Slippage of attached cross bridges in contracting rabbit psoas preparations induced by rapid lenght changes. Biophys. Struct. Mechanism4, 223–236 (1978)Google Scholar
  9. Hill, T. L.: Theoretical formalism for the sliding filament model of contraction of striated muscle, Part I. Progr. Biophys. molec. Biol.28, 267–340 (1974)CrossRefGoogle Scholar
  10. Holmes, K. C.: The myosin cross-bridge as revealed by structure studies. In: Int. Symp. Rottach-Egern/Tegernsee, 1976 (eds. G. Riecker, A. Weber, J. Goodwin). Berlin-Heidelberg-New York Springer 1977Google Scholar
  11. Huxley, A. F., Simmons, R. M.: Proposed mechanism of force generation in striated muscle. Nature (Lond.)233, 533–538 (1971)CrossRefADSGoogle Scholar
  12. Huxley, A. F.: Muscular contraction. J. Physiol. (Lond.)243, 1–43 (1974)Google Scholar
  13. Huxley, H. E.: The mechanism of muscular contraction. Science164, 1356–1366 (1969)ADSGoogle Scholar
  14. Julian, F. J., Sollins, K. R., Sollins, M. R.: A model for the transient and steady-state mechanical behaviour of contracting muscle. Biophys. J.14, 546–562 (1974)CrossRefGoogle Scholar
  15. Kuhn, H. J.: Transformation of chemical energy into mechanical energy by glycerol-extracted fibres of insect flight muscle in the absence of nucleosidetriphosphate-hydrolysis. Experientia (Basel)29, 1086–1088 (1973)Google Scholar
  16. Kuhn, H. J.: Reversible transformation of mechanical work into chemical free energy by stretch dependent binding of AMP-PNP in glycerinated fibrillar muscle fibres. In: Symposium on insect flight muscle, Oxford 1977 (ed. R. T. Tregear). Amsterdam: Elsevier/North Holland 1977aGoogle Scholar
  17. Kuhn, H. J.: Cross bridge slippage induced by the ATP analogue AMP-PNP and stretch in glycerol-extracted fibrillar muscle fibres. Biophys. Struct. Mechanism4, 159–168 (1978)CrossRefGoogle Scholar
  18. Kuhn, W., Ramel, A., Walters, D. H., Ebner, G., Kuhn, H. J.: The production of mechanical energy from different forms of chemical energy with homogeneous and cross-striated high polymer systems. Fortschr. Hochpolymer-Forschg.1, 540–592 (1960)Google Scholar
  19. Kuhn, W., Müller, S., Kuhn, H. J., Eisenberg, A.: Experimentelle Prüfung der Beziehungen zwischen mechanischen Konstanten von Gelen für Dehnung bei konstantem Quellungsgrade einerseits, bei konstantem Partialdruck des Quellungsmittels andererseits. Makromol. Chem.62, 40–48 (1963)CrossRefGoogle Scholar
  20. Lymn, R. W., Taylor, E. W.: Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry (Wash.)10, 4617–4624 (1971)Google Scholar
  21. Lymn, R. W., Huxley, H. E.: X-ray diagrams from skeletal muscle in the presence of ATP-analogs. Cold Spr. Harb. Symp. quant. Biol.37, 449–453 (1973)Google Scholar
  22. Marston, S. B., Rodger, C. D., Tregear, R. T.: Changes in muscle cross bridges whenΒ,γ-imido-ATP binds to myosin. J. molec. Biol.104, 263–276 (1976)CrossRefGoogle Scholar
  23. Podolsky, R. J., Nolan, A. C.: Muscle contraction transients, cross bridge kinetics, and the Fenn effect. Cold Spr. Harb. Symp. quant. Biol.37, 661–668 (1973)Google Scholar
  24. Reedy, M. K., Holmes, K. C., Tregear, R. T.: Induced changes in orientation of the cross bridges of glycerinated insect flight muscle. Nature (Lond.)207, 1276–1280 (1965)ADSGoogle Scholar
  25. Reedy, M. K.: Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross bridge lattice. J. molec. Biol.31, 155–176 (1968)CrossRefGoogle Scholar
  26. Rüegg, J. C., Kuhn, H. J., Herzig, J. W., Dickhaus, H.: Effect of calcium ions on force generation and elastic properties of briefly glycerinated muscle fibres. In: Calcium transport in contraction and secretion (eds. E. Carafoli et al.). Amsterdam: North-Holland 1975Google Scholar
  27. Schaub, M. C., Watterson, J. G., Pfister, M., Waser, P. G.: Ligand induced changes in thiol group reactivity of fast and slow myosins. FEBS-Symp.31, 21–30 (1975)Google Scholar
  28. Tregear, R. T., Squire, J. M.: Myosin content and filament structure in smooth muscle. J. molec. Biol.77, 279–290 (1973)CrossRefGoogle Scholar
  29. White, D. C. S.: Rigor contraction in glycerinated insect flight and vertebrate muscle. J. Physiol. (Lond.)208, 583–605 (1970)ADSGoogle Scholar
  30. White, H. D., Taylor, E. W.: Energetics and mechanism of actomyosin adenosine triphosphate. Biochemistry (Wash.)15, 5818–5826 (1976)Google Scholar
  31. Yount, R., Babcock, D., Ballantyne, W., Ojala, D.: Adenyl imidodiphosphate, an adenosine triphosphate analog containing a P-N-P linkage. Biochemistry (Wash.)10, 2484–2489 (1971)Google Scholar
  32. Yamamoto, T., Herzig, J. W.: Series elastic properties of skinned muscle fibres in contraction and rigor. Pflügers Arch, (in press)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. J. Kuhn
    • 1
  1. 1.Department of Physiology IIUniversity of HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations