Advertisement

Archiv für Toxikologie

, Volume 30, Issue 3, pp 187–198 | Cite as

Arzneimittelbedingte Hyposiderämie bei ratten

  • Inge Schäfer
  • Sándor Elek
Originalarbeiten

Zusammenfassung

4 Std nach einmaliger Gabe von 24 mg/kg d,l-Amphetamin i.p. kommt es bei Ratten zu einem Abfall des Eisens im Plasma um 40 bis 60 %. Die Reaktion ist nicht mit dem amphetaminbedingten Anstieg von Körpertemperatur und Skeletmuskelarbeit zu erklären, da sie durch Vorbehandlung mit α-Methyltyrosin, Chlorpromazin, Haloperidol, Guanethidin und Reserpin nicht unterdrückt werden kann.

Jedes der zur Vorbehandlung verwandten Medikamente löst selbst bei entsprechend hoher Dosierung eine Hyposiderämie aus. 4 Std nach einmaliger Gabe von 200 mg/kg α-Methyltyrosin vermindert sich der Eisenspiegel im Plasma um 55 %, nach 10 mg/kg Chlorpromazin um 11 %, nach 5 mg/kg Haloperidol um 28 % und nach 20 mg/kg Guanethidin um 50 %. Dieser Effekt ist am ausgeprägtesten mit einer Plasmaeisenverminderung um 69 % 20 Std nach Gabe von 20 mg/kg Reserpin.

Als möglicher Pathomechanismus der arzneimittelbedingten Hyposiderämie wird die Wirkung der untersuchten sämtlich zentralnervös aktiven Medikamente als “non-specific stressfull agents” sowie der durch ihre toxische Konzentration in Gang gesetzte Entgiftungsmechanismus im RES diskutiert.

Schlüsselwörter

Plasmaeisenspiegel Arzneimittelnebenwirkungen Ratte Amphetamin Chlorpromazin Raloperidol Guanethidin Reserpin α-Methyltyrosin 

Drug induced hyposideremia in rats

Abstract

Four hours following a single dose of 25 mg/kg of d, 1-Amphetamine in rats, a 40 to 60 % drop of plasma iron level occurred. This reaction cannot be explained by the Amphetamine-induced rise in body temperature and motor activity, since when pretreated with α-Methyltyrosine, Chlorpromazin, Haloperidolum, Guanethidin and Reserpin this was not observable.

All the drugs applied for pretreatment in adequately high doses also induced hyposideremia. Four hours following a single dose of 200 mg/kg of α-Methyltyrosine, plasma iron level was reduced by 55 %, after 10 mg/kg of Chlorpromazin by 11 %, after 5 mg/kg of Haloperidolum by 28 % and after 20 mg/kg of Guanethidin by 50 %. The most pronounced effect (69 % fall) was obtained by 20 hour pretreatment with 20 mg/kg of Reserpin.

As possible pathomechanism of the drug induced hyposideremia the applied drugs may be regarded as “non-specific stressfull agents”, or as another possibility, the detoxifying mechanism in RES induced by toxic concentrations of the applied drugs can be considered as responsible for this phenomena.

Key words

Plasma Iron Level Side Effect of Drugs Rat Amphetamine Chlorpromazin Haloperidolum Guanethidin Reserpine α-Methyltyrosine. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Borella, L., Herr, F., Wojdan, A.: Prolongation of certain effects of amphetamine by chlorpromazine. Canad. J. Physiol. Pharmacol.47, 7–13 (1968).Google Scholar
  2. Cartwright, G. E., Gubler, C. J., Wintrobe, M. M.: The anemia of infection. XII. The infect of turpentine and colloidal thorium dioxyde on the plasma iron and plasma copper of dogs. J. biol. Chem.184, 579–587 (1950).PubMedGoogle Scholar
  3. Cartwright, G. E., Hamilton, L. D., Gubler, C. J., Fellows, N. M., Ashenbrucker, H., Wintrobe, M. M.: The anemia of infection. XIII. Studies on experimentally produced acute hypoferremia in dogs and the relationship of the adrenal cortex to hypoferremia. J. clip. Invest.30, 161–173 (1965).Google Scholar
  4. Dews, P. B.: The measurement of the influence of drugs on voluntary activity in mice. Brit. J. Pharmacol.8, 46–48 (1953).PubMedGoogle Scholar
  5. Dingell, J. V., Owens, M. L., Norvich, M. R., Sulser, F.: One the role of norepinephrine biosynthesis in the central action of amphetamine. Life Sci.6, 1155–1162 (1967).PubMedCrossRefGoogle Scholar
  6. Elek, S. J., Schäfer, I.: Tolerance against d,l-amphetamine induced disturbances of iron metabolism in rats. Proceedings of the European Society for the study of Drug Toxicity, Vol. XII, p. 56–61. Excerpta med. (Amst.) (1971).Google Scholar
  7. Feldthusen, U., Lassen, N. A.: Serum iron after coronary occlusion and traumatic injuries. Acta med. stand.150, 53–62 (1954).Google Scholar
  8. Galambos, E., Pfeifer, A. K., György, L., Molnár, J.: Study on the excitation induced by amphetamine, cocaine and alpha-methyl-tryptamine. Psychopharmacologia (Berl.)11, 112–129 (1967).CrossRefGoogle Scholar
  9. Graf, U., Henning, H. J., Stenge, K.: Formeln and Tabellen der mathematischen Statistik, 2. Aufl. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  10. Greenberg, G. R., Ashenbrucker, H., Lauritsen, M., Worth, W., Humphreys, S. R., Wintrobe, M. M.: The anemia of infection. V. Fate of injected radioactive iron in the presence of inflammation. J. clin. Invest.26, 121–125 (1947).PubMedCrossRefGoogle Scholar
  11. Gross, H., Sandberg, M., Holly, O. M.: Changes in copper and in iron retention in chronic diseases accompanied by secondary anemia. II. Changes in liver, spleen and stomach. Amer. J. med. Sci.204, 201–205 (1942).Google Scholar
  12. Hamilton, L. D., Gubler, C. J., Cartwright, G. E., Wintrobe, M. M.: The diurnal variation in the plasma iron level of men. Proc. Soc. exp. Biol. (N.Y.)75, 65–68 (1950).Google Scholar
  13. Hamilton, L. D., Gubler, C. J., Ashenbrucker, H., Cartwright, G. E., Wintrobe, M. M.: Studies on the relationship of the adrenal cortex to the experimental production of hypoferremia in rats. Endocrinology48, 44–55 (1951).PubMedCrossRefGoogle Scholar
  14. Heilmeyer, L.: Lehrbuch der Inneren Medizin, 2. Aufl., S. 19 and 398. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  15. Heilmeyer, L.: Grundrisse der Pathophysiologie des Blutes, Kapitel 5, S. 33–38. Stuttgart: Fischer 1968.Google Scholar
  16. Heilmeyer, L.: Blut und Blutkrankheiten. In: Handbuch der Inneren Medizin, 5. Aufl., Band II, 1, 2. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  17. Herman, Z. S.: Influence of some psychotropic and adrenergic blocking agents upon amphetamine stereotyped behaviour in white rats. Psychopharmacologia (Berl.)11, 136–142 (1967).CrossRefGoogle Scholar
  18. Lockner, D.: The diurnal variation of plasma iron turnover and erythropoesis in healthy aubjects and cancer patients. Brit. J. Haemat.12, 646–656 (1966).PubMedGoogle Scholar
  19. Llaurado, J. G.: Sodium, potassium and water retention by sympathicomimetic substances in the rat. Fed. Proc. III–IV.21, 2, 430 (1962).Google Scholar
  20. Morpurgo, C., Theobald, W.: Pharmacological modifications of the amphetamineinduced hyperthermia in rats. Europ. J. Pharmacol.2, 287–294 (1967).CrossRefGoogle Scholar
  21. Pfeifer, A. K., Vizi, E. Sz., Sátory, E.: Studies on the action of guanethidine on the central nervous system and on the norepinephrine content of brain in rats. In: Neuropharmacology, Vol. 3, 417–419, (Bradley, P. B., Flügel, F., Hoch, P. H., Eds.). Amsterdam: Elsevier Publishing Company 1964.Google Scholar
  22. Pylkkö, O. O., Törnblom, N. E.: Effect of heat on human serum iron levels. Acta endocr. (Kbh.)28, 251–254 (1958).Google Scholar
  23. Schäfer, K. H.: Neuroendocrine control of iron metabolism. In: Iron metabolism, International Symposium Aix-en-Provence, France, 1963, 280–288. (Finch, C. A., Ed.). Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  24. Speck, B.: Diurnal variation of serum iron and the latent iron-binding in normal adults. Helv. med. Acta34, 231–238 (1968).PubMedGoogle Scholar
  25. Sulser, F., Dingell, J. V.: Potentiation and blockade of the central action of amphetamine by chlorpromazine. Biochem. Pharmacol.17, 634–636 (1968).PubMedCrossRefGoogle Scholar
  26. Terada, K.: Effect of the changes of environmental factors upon the serum iron and serum copper. Nipon Onsen-Kiko Gakkai Zasshi23, 154–172 (1959).Google Scholar
  27. Unshelm, J.: Individuelle, tages- und tageszeitabhängige Schwankungen von Blutbestandteilen beim Rind. 5. Mitteilung. Zbl. Vet.-Med.16, 703–711 (1969).Google Scholar
  28. Valzelli, L., Dolfini, E., Tansella, M., Garattini, S.: Activity of centrally acting drugs on amphetamine metabolism. J. Pharm. Pharmacol.20, 595–599 (1968).PubMedGoogle Scholar
  29. Weisman, A., Koe, B. K., Tenen, S. S.: Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmacol. exp. Ther.151, 339–352 (1966).Google Scholar
  30. Zalis, E. G., Lundberg, G. D., Knutson, R. A.: The pathophysiology of acute amphetamine poisoning with pathologic correlations. J. Pharmacol. exp. Ther.158, 115–127 (1967).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Inge Schäfer
    • 1
  • Sándor Elek
    • 1
  1. 1.Institut für Arzneimittelforschung BudapestBudapest

Personalised recommendations