Lambdoid phages that simplify the recovery of in vitro recombinants

  • Noreen E. Murray
  • W. J. Brammar
  • K. Murray


Derivatives of phage λ are described for use as vectors for fragments of DNA generated with theHindIII andEcoRI restriction enzymes. With some vectors, hybrid molecules are recognised by a change from a turbid to a clear plaque morphology resulting from the insertion of a fragment of DNA into the λ gene coding for the phage regressor. Other vectors contain a central, replaceable fragment of DNA which imparts a readily recognisable phenotype. This central fragment may include either a gene for a mutant transfer RNA (suppressor) or a part of thelacZ gene ofE. coli able to complement alacZ host. The appropriatelacZ host and indicator plates permit the ready distinction between recombinant and vector phages by the colour of the plaques.


Colour Enzyme Restriction Enzyme Indicator Plate Plaque Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adhya, S., Gottesman, M., de Crombrugghe, B.: Release of polarity inE. coli by geneN of phage λ: termination and antitermination of transcription. Proc. nat. Acad. Sci. (Wash.)71, 2534–2538 (1974)CrossRefGoogle Scholar
  2. Appleyard, R.K.: Segregation of new lysogenic types during growth of a doubly lysogenic strain derived fromEscherichia coli K12. Genetics39, 440–452 (1954)PubMedGoogle Scholar
  3. Beggs, J.D., Guerineau, M., Atkins, J.F.: A map of the restriction targets in yeast 2 micron plasmid DNA cloned on bacteriophage lambda. Molec. gen. Genet. (in press) 1976Google Scholar
  4. Bellett, A.J.D., Busse, H.G., Baldwin, R.L.: Tandem genetic duplications in a derivative of phage lambda. The bacteriophage lambda, ed. by A.D. Hershey, pp. 501–514 (1971)Google Scholar
  5. Blattner F.R., Fiandt, M., Hass, K.K., Twose, P.A., Szybalski, W.: Deletions and insertions in the immunity region of coliphage λ: revised measurement of the promoter startpoint distance. Virology62, 458–471 (1974)PubMedCrossRefGoogle Scholar
  6. Borck, K., Beggs, J.D., Brammar, W.J., Hopkins, A.S., Murray, N.E.: The construction in vitro of transducing derivatives of phage lambda. Molec. gen. Genet.146, 199–207 (1976)PubMedCrossRefGoogle Scholar
  7. Campbell, A.: Sensitive mutants of bacteriophage λ. Virology14, 22–32 (1961)PubMedCrossRefGoogle Scholar
  8. Clark, A.J.: The beginning of a genetic analysis of recombination proficiency. J. cell. Phys., Suppl. to Vol.70, No. 2 (Part II), 165–180 (1967)Google Scholar
  9. Clark, L., Carbon, J.: Biochemical construction and selection of hybrid plasmids containing specific segments of theEscherichia coli genome. Proc. nat. Acad. Sci. (Wash.)72, 4361–4365 (1975)CrossRefGoogle Scholar
  10. Court, D., Sato, K.: Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology39, 348–352 (1969)PubMedCrossRefGoogle Scholar
  11. davies, J., Jacob, F.: Genetic mapping of the regulator and operator genes of thelac operon. J. molec. Biol.36, 413–416 (1968)PubMedCrossRefGoogle Scholar
  12. Davis, R. W., Parkinson, J.S.: Deletion mutants of bacteriophage lambda. III. Physical structure ofattϕ. J. molec. Biol.56, 401–423 (1971)CrossRefGoogle Scholar
  13. Enquist, L., Tiemeier, D., Leder, P., Weisberg, R., Sternberg, N.: Safer derivatives of bacteriophage λgt. λC for use in cloning of recombinant DNA molecules. Nature (Lond.)259 596–598 (1976)CrossRefGoogle Scholar
  14. Franklin, N.C.: TheN operon of lambda: extent and regulation as observed in fusions to the tryptophan operon ofEscherichia coli. In: The bacteriophage lambda (ed. A.D. Hershey), pp. 621–638. New York: Cold Spring Harbor Laboratories 1971Google Scholar
  15. Franklin, N.C.: Altered reading of genetic signals fused to theN operon of bacteriophage λ: genetic evidence for modification of polymerase by the protein product of theN gene. J. molec. Biol.89, 33–48 (1974)PubMedCrossRefGoogle Scholar
  16. Goldberg, A.R., Howe, M.: New mutations in theS cistron of bacteriophage λ affecting host cell lysis. Virology38, 200–202 (1969)PubMedCrossRefGoogle Scholar
  17. Gottesman, M.M., Gottesman, M.E., Gottesman, S., Gellert, M.: Characterisation of bacteriophage λ reverse as anEscherichia coli phage carrying a unique set of host-derived recombination function. J. molec. Biol.88, 471–487 (1974)PubMedCrossRefGoogle Scholar
  18. Grunstein, M., Hogness, D.S.: Colony hybridisation: a method for the isolation of cloned DNAs that contain a specific gene. Proc. nat. Acad. Sci. (Wash.)72, 3961–3963 (1975)CrossRefGoogle Scholar
  19. Haggerty, D.M., Schlief, R.F.: Location in bacteriophage lambda DNA of cleavage sites of the site-specific endonuclease fromBacillus amyloliquefaciens H. J. Virol.18, 659–663 (1976)PubMedGoogle Scholar
  20. Hedgpeth, J., Goodman, H.M., Boyer, H.W.: DNA nucleotide sequence restricted by the RI endonuclease. Proc. nat. Acad. Sci. (Wash.)69, 3448–3502 (1972)CrossRefGoogle Scholar
  21. Helinski, D.R., Falkow, S., Curtiss, R., Szybalski, W.: Guidelines for research involving recombinant DNA molecules, Appendix C. National Institutes for Health, Bethesda, Maryland, U.S.A. (1976)Google Scholar
  22. Horwitz, J.P., Chua, J., Curby, R.J., Tomson, A.J., Da Rooge, M.A., Fisher, B.E., Mauricio, J., Klundt, I.: Substrate for cytochemical demonstration of enzyme activity. I. Some substituted 3-indolyl-β-D-glycopyranosides. J. med. Chem.7, 574–583 (1964)CrossRefPubMedGoogle Scholar
  23. Ippen, K., Shapiro, J.A., Beckwith, J.R.: Transposition of thelac region to thegal region of theEscherichia coli chromosome: Isolation of λlac transducing bacteriophages. J. Bact.108, 5–9 (1971)PubMedGoogle Scholar
  24. Jones, K.W., Murray, K.: A procedure for detection of heterologous DNA sequences in lambdoid phages by in situ hybridisation. J. molec. Biol.96, 455–460 (1975)PubMedCrossRefGoogle Scholar
  25. Kaiser, A.D., Hogness, D.S.: The transformation ofEscherichia coli with Deoxyribonucleic acid isolated from bacteriophage λdg. J. molec. Biol.2, 392–415 (1960)PubMedGoogle Scholar
  26. Kaiser, A.D., Jacob, F.: Recombination between related temperate bacteriophage and the genetic control of immunity and prophage localisation. Virology4, 509–521 (1957)PubMedCrossRefGoogle Scholar
  27. Lederberg, E.M., Cohen, S.N.: Transformation ofSalmonella typhimurium by plasmid deoxyribonucleic acid. J. Bact.119, 1072–1074 (1974)PubMedGoogle Scholar
  28. Liedke-Kulke, M., Kaiser, A.D.: The c-region of coliphage 21. Virology32, 475–481 (1967)PubMedCrossRefGoogle Scholar
  29. Lennox, E.S.: Transduction of linked characters of the host of bacteriophage P1. Virology1, 190–206 (1955)PubMedCrossRefGoogle Scholar
  30. Mandel, M., Higa, A.: Calcium-dependent bacteriophage DNA infection. J. molec. Biol.53, 159–162 (1970)PubMedCrossRefGoogle Scholar
  31. Marmur, J.: A procedure for the isolation of Deoxyribonucleic acid from microorganisms. J. molec. Biol.3, 208–218 (1961)CrossRefGoogle Scholar
  32. Mertz, J.E., Davis, R.W.: Cleavage of DNA by RI restriction endonuclease generates cohesive ends. Proc. nat. Acad. Sci. (Wash.)69, 3370–3374 (1972)CrossRefGoogle Scholar
  33. Moir, A., Brammar, W.J.: The use of specialised transducing phages in the amplification of enzyme production. Molec. gen. Genet. (in press) (1976)Google Scholar
  34. Murray, N.E., Manduca de Ritis, P., Foster, L.A.: DNA targets for theEscherichia coli K restriction system analysed genetically in recombinants between phages phi 80 and lambda Molec. gen. Genet.120, 261–281 (1973)PubMedCrossRefGoogle Scholar
  35. Murray, N.E., Manduca de Ritis, P., Foster, L.A.: DNA targets in phage λ to form receptor chromosomes for DNA fragments. Nature (Lond.)251, 476–481 (1974)CrossRefGoogle Scholar
  36. Murray, K., Murray, N.E.: Phage lambda receptor chromosomes for DNA fragments made with restriction endonuclease III ofHaemophilus influenzae and restriction endonuclease I ofEscherichia coli. J. molec. Biol.98, 551–564 (1975)PubMedGoogle Scholar
  37. Old, R., Murray, K., Roizes, G.: Recognition sequence of restriction endonuclease III fromHaemophilus influenzae. J. Molec. Biol.92, 331–339 (1975)PubMedCrossRefGoogle Scholar
  38. Parkinson, J.S.: Genetics of the left arm of the chromosome of bacteriophage lambda. Genetics59, 311–325 (1968)PubMedGoogle Scholar
  39. Parkinson, J.S.: Deletion mutants of bacteriophage lambda. II. Genetic properties ofatt-defective mutants. J. molec. Biol.56, 385–401 (1971)PubMedCrossRefGoogle Scholar
  40. Parkinson, J.S., Huskey, R.J.: Deletion mutants of bacteriophage lambda. I. Isolation and initial characterisation. J. molec. Biol.56, 369–384 (1971)PubMedCrossRefGoogle Scholar
  41. Perricaudet, M., Tiollais, P.: Defective bacteriophage lambda chromosome, potential vector for DNA fragments obtained after cleavage byBacillus amyloliquifaciens endonuclease (Bam1). FEBS Letters56, 7–11 (1975)PubMedCrossRefGoogle Scholar
  42. Philippsen, P., Streeck, R.E., Zauchau, H.G.: Defined fragments of calf, human and rat DNA produced by restriction nucleases. Europ. J. Biochem.45, 475–488 (1974)CrossRefGoogle Scholar
  43. Rambach, A., Tiollais, P.: Bacteriophage λ havingEcoRI endonuclease sites only in the non-essential region of the genome. Proc. nat. Acad. Sci. (Wash.)71, 3927–3930 (1974)CrossRefGoogle Scholar
  44. Sharp, P.A., Sugden, B., Sambrook, J.: Detection of two restriction endonuclease activities inHaemophilus parainfluenzae using analytical agarose ethidium bromide electrophoresis. Biochemistry12, 3055–3063 (1973)PubMedCrossRefGoogle Scholar
  45. Shimada, K., Weisberg, R.A., Gottesman, M.E.: Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J. molec. Biol.63, 483–503 (1972)PubMedCrossRefGoogle Scholar
  46. Shulman, M., Gottesman, M.: Lambdaatt 2: a transducing phage capable of intra molecularint-xis Promoted Recombination. In: The bacteriophage lambda (ed. A.D. Hershey), pp. 477–488. New York: Cold Spring Harbor Laboratories 1971Google Scholar
  47. Smith, H.O., Nathans, D.: Nomenclature for restriction enzymes. J. molec. Biol.81, 419–423 (1973)PubMedCrossRefGoogle Scholar
  48. Smith, J.D., Barnett, L., Brenner, S., Russell, R.L.: More mutant tyrosine transfer RNAs. J. molec. Biol.54, 1–14 (1970)PubMedCrossRefGoogle Scholar
  49. Spizizen, J.: Transformation of biochemically deficient strains ofBacillus subtilis by deoxyribonucleate. Proc. nat. Acad. Sci. (Wash.)44, 1072–1078 (1958)CrossRefGoogle Scholar
  50. Stacey, K.A., Simson, E.: Improved method for the isolation of thymine-requiring mutants ofEscherichia coli. J. Bact.90, 554–555 (1965)PubMedGoogle Scholar
  51. Szybalski, W., Kubinski, H., Hradecna, Z., Summers, W.C.: Analytical and preparative separation of the complementary DNA strands. Mechanics in enzymology, Vol. XXI, pp. 383–413. New York: Academic Press, Inc.Google Scholar
  52. Thomas, M., Cameron, J.R., Davis, R.W.: Viable molecular hybrids of bacteriophage λ and eukaryotic DNA. Proc. nat. Acad. Sci. (Wash.)71, 4579–4583 (1974)CrossRefGoogle Scholar
  53. Ullmann, A., Jacob, F., Monod, J.: Characterisation by in vitro complementation of a peptide corresponding to an operatorproximal segment of the β-galactosidase structural gene ofE. coli. J. molec. Biol.24, 339–343 (1967)PubMedCrossRefGoogle Scholar
  54. Weil, J., Signer, E.R.: Recombination in bacteriophage λ: II. Site-specific recombination promoted by the integration system. J. molec. Biol.34, 273–279 (1968)PubMedCrossRefGoogle Scholar
  55. Wensink, P.C., Finnegan, D.J., Donelson, J.E., Hogness, D.S.: A system for mapping DNA sequences in the chromosomes ofDrosophila melanogaster. Cell3, 315–325 (1974)PubMedCrossRefGoogle Scholar
  56. Wilson, G.A., Young, F.E.: Isolation of a sequence-specific endonuclease (BamI) fromBacillus amyloliquefaciens. J. molec. Biol.97, 123–125 (1975)PubMedGoogle Scholar
  57. Wood, W.B.: Host specificity of DNA produced byE. coli: Bacterial mutations affecting the restriction and modification of DNA. J. molec. Biol.16, 118–133 (1966)PubMedCrossRefGoogle Scholar
  58. Yanofsky, C., Lennox, E.S.: Transduction and recombination study of linkage relationships among the genes controlling tryptophan synthesis inEscherichia coli. Virology8, 425–447 (1959)PubMedCrossRefGoogle Scholar
  59. Yoshimori, R.N.: A genetic and biochemical analysis of the restriction and modification of DNA by resistance transfer factors. Ph. D. Thesis, University of California. (1971)Google Scholar
  60. Zissler, J., Signer, E.R., Schaefer, F.: The role of recombination in growth of bacteriophage lambda. I. The gamma gene. The bacteriophage lambda, ed. A.D. Hershey, pp. 455–475 New York: Cold Spring Harbor Laboratories 1971Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Noreen E. Murray
    • 1
  • W. J. Brammar
    • 1
  • K. Murray
    • 1
  1. 1.Department of Molecular BiologyUniversity of EdinburghEdinburghScotland

Personalised recommendations