Intensive Care Medicine

, Volume 21, Issue 1, pp 38–44 | Cite as

Effect of extracorporeal life support on cerebral blood flow, metabolism and electrophysiology in normothermic cats

  • T. Iijima
  • T. Back
  • K. -A. Hossmann



Recently, extracorporeal life support (ECLS) by venoarterial bypass perfusion has been recommended for the treatment of refractory respiratory and/or cardiac failure but the safety of this application for the brain is not yet established. Therefore, the effects of normothermic ECLS on cerebral blood flow, metabolism and electrophysiology were studied in cats with total arrest of cardiopulmonary circulation.


An extracorporeal circulation (ECC) system, consisting of a roller pump, a membrane oxygenator and a heat exchanger, was connected to the circulation of cat by cannulae inserted via the jugular vein and femoral vessels. After 2 h ECLS brains were frozen in situ and investigated for changes in regional metabolism.

Measurements and results

During 2 h ECC hematocrit declined from 37±7% to 21±10% (means±SD,p<0.05), cerebral blood flow decreased to 73±14% of control (p<0.05) and cerebral oxygen delivery to 46±13% of control (p<0.05) although arterial blood pressure and bypass flow rate did not change. Plasma lactate increased from 0.8±0.3 to 9.2±4.2 μmol/ml (p<0.05), and brain tissue lactate from 2.3±0.9 to 10.6±2.7 μmol/g (p<0.05). Hematocrit correlated positively with cerebral oxygen delivery (r=0.86,p<0.001).


These data demonstrate that ECLS is associated with reduced cerebral oxygen delivery and may cause brain hypoxia despite normal blood pressure. This complication may contribute to the high incidence of neurological disturbances after prolonged ECLS.

Key words

Cardiopulmonary bypass Extracorporeal circulation Cerebrovascular circulation Energy metabolism Electroencephalogram Evoked potentials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Towne BH, Lott IT, Hicks DA, Healey T (1985) Long-term follow-up of infants and children treated with extracorporeal membrane oxygenation (ECMO): a preliminary report. J Pediatr Surg 20:410–414PubMedGoogle Scholar
  2. 2.
    Meliones JN, Custer JR, Snedecor S, Moler FW, O'Rourke P, Delius RE (1991) Extracorporeal life support for cardiac assist in pediatric patients. Review of ELSO Registry Data. Circulation 84 [Suppl III]:168–172Google Scholar
  3. 3.
    Delius RE, Bove EL, Meliones JN, Custer JR, Moler FW, Crowley D, Amirika A, Behrendt DM, Bartlett RH (1992) Use of extracorporeal life suport in patients with congenital heart disease. Crit Care Med 20:1216–1222PubMedGoogle Scholar
  4. 4.
    Gibbon JH Jr (1954) The application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 37:171–182PubMedGoogle Scholar
  5. 5.
    Bartlett RH, Gazzaniga AB, Toomasian J, Coran AG, Roloff D, Rucker R (1986) Extracorporeal membrane oxygenation (ECMO) in neonatal respiratory failure. Ann Surg 204:236–245PubMedGoogle Scholar
  6. 6.
    Stolar CJ, Snedecor SM, Bartlett RH (1991) Extracorporeal membrane oxygenation and neonatal respiratory failure: experience from the extracorporeal life support organization. J Pediatr Surg 26:563–571PubMedCrossRefGoogle Scholar
  7. 7.
    Altman PL, Dittmer DS (eds) (1972) Biology data book, vol 3, 2nd edn. University Press Maryland, BethesdaGoogle Scholar
  8. 8.
    Kelman GR, Nunn JF (1968) Computer produced physiological tables for calculations involving the relationships between blood oxygen tension and content. Butterworths, LondonGoogle Scholar
  9. 9.
    Pontén U, Ratcheson RA, Salford LG, Siesjö BK (1973) Optimal freezing conditions for cerebral metabolites in rats. J Neurochem 21:1127–1138PubMedGoogle Scholar
  10. 10.
    Paschen W, Niebuhr I, Hossmann K-A (1981) A bioluminescence method for the demonstration of regional glucose distribution in brain slices. J Neurochem 36:513–517PubMedGoogle Scholar
  11. 11.
    Paschen W (1985) Regional quantitative determination of lactate in brain sections. A bioluminescent approach. J Cereb Blood Flow Metab 5:609–612PubMedGoogle Scholar
  12. 12.
    Csiba L, Paschen W, Hossmann K-A (1983) A topographic quantitative method for measuring brain tissue pH under physiological and pathophysiological conditions. Brain Res 289:334–337PubMedCrossRefGoogle Scholar
  13. 13.
    Lowry OH, Passonneau JV (1972) Flexible system of enzymatic analysis. Academic Press, New York LondonGoogle Scholar
  14. 14.
    Schmidt-Kastner R, Hossmann K-A, Grosse Ophoff B (1986) Relationship between metabolic recovery and the EEG after prolonged ischemia of cat brain. Stroke 17:1164–1169PubMedGoogle Scholar
  15. 15.
    Safar P, Abramson NS, Angelos M, Cantadore R, Leonov Y, Levine R, Pretto E, Reich H, Sterz F, Stezoski SW, Tisherman S (1990) Emergency cardipulmonary bypass for resuscitation from prolonged cardiac arrest. Am J Emerg Med 8:55–67PubMedCrossRefGoogle Scholar
  16. 16.
    Sterz F (1992) Resuscitation of patients using a cardiopulmonary bypass. Anästhesiol Intensivmed Notfallmed Schmerzther 27:218–224PubMedCrossRefGoogle Scholar
  17. 17.
    Wilson GJ, Rebeyka IM, Coles JG, Desrosiers AJ, Dasmahapatra HK, Adler S, Feitler DA, Sherret H, Kielmanowicz S, Ikonomidis J, Gatley RAA, Taylor M (1988) Loss of the somatosensory evoked response as an indicator of reversible cerebral ischemia during hypothermic, low-flow cardiopulmonary bypass. Ann Thorac Surg 45:206–209PubMedCrossRefGoogle Scholar
  18. 18.
    Michenfelder JD, Milde JH (1992) The effect of profound levels of hypothermia (below 14 degrees C) on canine cerebral metabolism. J Cereb Blood Flow Metab 12:877–880PubMedGoogle Scholar
  19. 19.
    Fiaccadori E, Vezzani A, Coffrini E, Guariglia A, Ronda N, Tortorella G, Vitali P, Pincolini S, Beghi C, Fesani F, Borghetti A (1989) Cell metabolism in patients undergoing major valvular heart surgery: Relationship with intra and postoperative hemodynamics, oxygen transport and oxygen utilization patterns. Crit Care Med 17:1286–1292PubMedGoogle Scholar
  20. 20.
    Del Canale S, Vezzani A, Belli L, Coffrini E, Guariglia A, Ronda N, Vitali P, Beghi C, Fesani F, Borghetti A, Fiaccadori E (1990) A comparative clinical study on the effect of cardiopulmonary bypass with different flows and pressures on skeletal muscle cell metabolism in patients undergoing coronary bypass grafting. J Thorac Cardiovasc Surg 99:327–334PubMedGoogle Scholar
  21. 21.
    Oldendorf WH (1971/72) Blood brain barrier permeability to lactate. Eur Neurol 6:49–55Google Scholar
  22. 22.
    Kuhr WG, van den Berg CJ, Korf J (1988) In vivo identification and quantitative evaluation of carrier-mediated transport of lactate at the cellular level in the striatum of conscious, freely moving rats. J Cereb Blood Flow Metab 6:848–856Google Scholar
  23. 23.
    Nemoto EM, Hoff JT, Severinghaus JW (1974) Lactate uptake and metabolism by brain during hyperlactemia and hypoglycemia. Stroke 5:48–55PubMedGoogle Scholar
  24. 24.
    Brown MM, Wade JPH, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108:81–93PubMedGoogle Scholar
  25. 25.
    von Kummer R, Scharf J, Back T, Reich H, Machens HG, Wildemann B (1987) Autoregulatory capacity and the effect of isovolemic hemodilution on local cerebral blood flow. Stroke 19:594–597; J Cereb Blood Flow Metab 8:848–856Google Scholar
  26. 26.
    Back T, von Kummer R (1991) Oxygen reactivity of cerebral circulation determined in cats. J Cereb Blood Flow Metab 11 [Suppl 2]:458Google Scholar
  27. 27.
    Stingele R, von Kummer R, Berger C, Haag P, Gerlach L, Hacke W (1993) Validation of laser-Doppler flowmetry: influence of hypercapnia, hemodilution and carbon monoxide inhalation. J Cereb Blood Flow Metab 13 [Suppl 1]:815Google Scholar
  28. 28.
    Short BL, Walker LK, Gleason CA, Jones MD Jr, Traystman RJ (1990) Effect of extracorporeal membrane oxygenation on cerebral blood flow and cerebral oxygen metabolism in newborn sheep. Pediatr Res 28:50–53PubMedGoogle Scholar
  29. 29.
    Linn F, Seo K, Hossmann K-A (1989) Experimental transplantation gliomas in the adult cat brain: Regional biochemistry. Acta Neurochir 99:85–93CrossRefGoogle Scholar
  30. 30.
    Maruyama M, Shimoji K, Ichikawa T, Hashiba M, Natio E (1985) The effect of extreme hemodilutions on the autoregulation of cerebral blood flow, electroencephalogram and cerebral metabolic rate of oxygen in the dog. Stroke 16:675–679PubMedGoogle Scholar
  31. 31.
    Henriksen L, Hjelms E, Lindeburgh T (1983) Brain hyperperfusion during cardiac operations. J Thorac Cardiovasc Surg 86:202–208PubMedGoogle Scholar
  32. 32.
    Lundar T, Lindegaard KF, Frøysaker T, Aaslid R, Wiberg J, Nornes H (1985) Cerebral perfusion during nonpulsatile cardiopulmonary bypass. Ann Thorac Surg 40:144–150PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • T. Iijima
    • 1
  • T. Back
    • 1
  • K. -A. Hossmann
    • 1
  1. 1.Max-Planck-Institut für Neurologische ForschungKölnGermany

Personalised recommendations