Molecular and Cellular Biochemistry

, Volume 107, Issue 1, pp 55–63 | Cite as

Comparative study of the expression of Rb and p53 genes in human colorectal cancers, colon carcinoma cell lines and synchronized human fibroblasts

  • Mohan L. Gope
  • Melanie Chun
  • Rajalakshmi Gope


We have compared the expression of the retinoblastoma (Rb) and p53 genes in normal human fibroblasts, colon carcinoma cell lines, matched pairs of colorectal tumor tissues and adjacent normal mucosa and in synchronized human diploid fibroblast cell line W138. The increased expression of Rb and p53 RNA was observed in a majority of colorectal cancers in comparison to adjacent normal mucosa and is accompanied by proportional increase in the expression of histone H3 gene. The Rb and p53 RNA levels varied significantly between the various colon carcinoma cell lines. However, we found that the expression of Rb and p53 RNA is regulated differently in cell cycle synchronized normal human fibroblasts. The Rb mRNA level did not change with the position in the cell cycle and did not differ significantly whether the cells were serum deprived or in 10% serum. But p53 mRNA expression follows the same pattern as histone H3 mRNA.

Key words

Rb and p53 genes gene expression colorectal cancers colon carcinoma cell lines cell cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeLeo AB, Gilber J, Appella E, Dubois GC, Law LW, Old LJ: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci, USA 76: 2420–2424, 1979PubMedCrossRefGoogle Scholar
  2. 2.
    Rotter V, Boss MA, Baltimore D: Increased concentration of an apparently identical cellular protein in cells transformed by either Abelson murine leukemia virus or other transforming agents. J Virol 38: 336–346, 1981PubMedGoogle Scholar
  3. 3.
    Crawford LV, Pim DC, Gurney EG, Goodfellow P, Taylor-Papadimitriow J: Detection of a common feature in several human tumor cell lines -a 53,000-dalton protein. Proc Natl Acad Sci, USA 78: 41–45, 1982CrossRefGoogle Scholar
  4. 4.
    Calabretta B, Kaczmarek L, Selleri L, Torelli G, Ming P-M, Ming S-C, Mercer WE: Growth-dependent expression of human Mr 53,000 tumor antigen messanger RNA in normal and neoplastic cells. Cancer Res 46: 5738–5742, 1986PubMedGoogle Scholar
  5. 5.
    Lee W-H, Bookstein R, Hong F, Young L-J, Shew J-Y, Lee EY-HP: Human retinoblastoma susceptibility gene: Cloning identification, and sequence. Science 235: 1394–1399, 1987PubMedGoogle Scholar
  6. 6.
    Lee W-H, Shew J-Y, Hong FD, Sery TW, Donosco LA, Young L-J, Bookstein R, Lee EY-HP: The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329: 642–645, 1987PubMedCrossRefGoogle Scholar
  7. 7.
    Bernards R, Schackleford GM, Gerber MR, Horowitz JM, Friend SH, Schartl M, Bogenmann E, Rapaport JM, McGee T, Dryja TP, Weinberg RA: Structure and expression of the murine retinoblastoma gene and characterization of its encoded protein. Proc Natl Acad Sci, USA 86: 6474–6478, 1989PubMedCrossRefGoogle Scholar
  8. 8.
    Grand RJ, Byrd PJ, Grabham PW, Gregory CD, Huen DS, Merrick RM, Young LS, Gallimore PH: The expression of the retinoblastoma gene product Rbl in primary and adenovirus transformed human cells. Oncogene 4: 1291–1298, 1989PubMedGoogle Scholar
  9. 9.
    Friend SH, Horowitz JM, Gerber MR, Wang X-F, Bogenmann E, Li FR, Weinberg RA: Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein. Proc Natl Acad Sci, USA 84: 9059–9063, 1987PubMedCrossRefGoogle Scholar
  10. 10.
    Lee EY-HP, To H, Shew J-Y, Bookstein R, Scully P, Lee W-H: Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241: 218–221, 1988PubMedGoogle Scholar
  11. 11.
    Weischselbaum RR, Beckett M, Diamond A: Some retinoblastomas, osteosarcomas, and soft tissue sarcomas may share a common etiology. Proc Natl Acad Sci, USA 85: 2106–2109, 1988CrossRefGoogle Scholar
  12. 12.
    Harbour JW, Lai S-L, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ: Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241: 353–357, 1988PubMedGoogle Scholar
  13. 13.
    Horowitz J, Yandell DW, Park S-H, Canning S, Whyte P, Buchkovich K, Harlow E, Weinberg RA, Dryja TP: Point mutational inactivation of the retinoblastoma antioncogene. Science 243: 937–940, 1989PubMedGoogle Scholar
  14. 14.
    Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Presinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Baker DF, Nakamura Y, White R, Vogelstein B: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244: 217–221, 1989PubMedGoogle Scholar
  15. 15.
    Gope R, Christensen MA, Thorson A, Lynch HT, Smyrk T, Hodgson C, Wildrick DM, Gope ML, Boman BM: Increased expression of the retinoblastoma gene in human colorectal carcinomas relative to normal colonic mucosa. J Natl Cancer Inst 82: 310–314, 1990PubMedGoogle Scholar
  16. 16.
    Gope R, Christensen MA, Thorson A, Lynch HT, Smyrk T, Gope ML, Boman BM: Molecular analysis of the retinoblastoma (Rb) gene in human colorectal carcinoma. In: J Utsunomiya and HT Lynch (eds) Hereditary Colorectal Cancer. Springer-Verlag, Tokyo, 1990 pp 489–496Google Scholar
  17. 17.
    Mercer WE, Nelson D, DeLeo AB, Old LJ, Baserga R: Microijection of monoclonal antibody to protein p53 inhibits serum induced DNA synthesis in 3T3 cells. Proc Natl Acad Sci, USA 79: 6309–6312, 1982PubMedCrossRefGoogle Scholar
  18. 18.
    Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A laboratory manual. Cold Spring Harobor Laoboratory, Cold Spring Harbor, NY, 1982Google Scholar
  19. 19.
    Bombik BM, Baserga R: Increased RNA synthesis in nuclear monolayers of WI-38 cells stimulated to proliferate. Proc Natl Acad Sci, USA 71: 2038–2042, 1974PubMedCrossRefGoogle Scholar
  20. 20.
    Siegel LI, Bresnick E: Northern hybridization analysis of RNA using diethylpyrocarbonate-treated nonfat milk. Anal Biochem 159: 82–87, 1986PubMedCrossRefGoogle Scholar
  21. 21.
    Fung YK, Murphree AL, T'Ang A, Qian J, Henrichs SH, Benedict WF: Structural evidence for the authenticity of the human retinoblastoma gene. Science 236: 1657–1661, 1987PubMedGoogle Scholar
  22. 22.
    Cleveland DW, Lopata MA, MacDonald RJ, Cowan NJ, Rutter WJ, Kirschner MW: Number and evolutionary conservation of alpha-and beta-tubulin and cytoplasmic beta and gamma-actin genes using specific cloned cDNA probes. Cell 20: 95–105, 1980PubMedCrossRefGoogle Scholar
  23. 23.
    Plumb M, Stein J, Stein G: Coordinate regulation of multiple histone mRNAs during the cell cycle in HeLa cells. Nucleic Acids Res 11: 2301–2310, 1983Google Scholar
  24. 24.
    Hirshhorn RR, Marashi F, Basarga R, Stein J, Stein G: Expression of histone genes in a G1 specific temperature sensitive mutant of the cell-cycle. Biochemistry 23: 3731–3736, 1984CrossRefGoogle Scholar
  25. 25.
    Xu H-J, Hu S-X, Hashimoto T, Takahashi R, Benedict WF: The retinoblastoma susceptibility gene product: a characteristic pattern in normal cells and abnormal expression in malignant cells. Oncogene 4: 807–812, 1989PubMedGoogle Scholar
  26. 26.
    Horowitz JM, Park S-M, Bogenmann E, Cheng J-C, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA: Frequent inactivation of the retinoblastoma anti-oncogene is restricted to subset of human tumor cells. Proc Natl Acad Sci, USA 87: 2775–2779, 1990PubMedCrossRefGoogle Scholar
  27. 27.
    Remvikos Y, Laurent-Puig P, Salmon RJ, Frelat G, Dutrillaux B, Thomas G: Simultaneous monitoring of p53 protein and DNA content of colorectal adenocarcinomas by flow cytometry. Int J Cancer 45: 450–456, 1990PubMedGoogle Scholar
  28. 28.
    Leibovitz A, Stinson JC, McCombs III, WB, McCoy CE, Mazur KC, Mabry ND: Classification of human colorectal adenocarcinoma cell lines. Cancer Res 36: 4562–4569, 1976PubMedGoogle Scholar
  29. 29.
    McCoy MS, Toole JJ, Cunningham JM, Cheng EH, Lowy DR, Weinberg RA: Characterization of a human colon/ lung carcinoma oncogene. Nature 302: 79–81, 1983PubMedCrossRefGoogle Scholar
  30. 30.
    Der CJ, Cooper GM: Altered gene products are associated with activation of cellular ras-k genes in human lung and colon carcinomas. Cell 32: 201–208, 1983PubMedCrossRefGoogle Scholar
  31. 31.
    Chen TR, Drabkowski D, Hay RJ, Macy M, Peterson Jr. W: WiDr is a derivative of another colon adenocarcinoma cell line, HT-29. Cancer Genet Cytogenet 27: 125–134, 1987PubMedCrossRefGoogle Scholar
  32. 32.
    Wood DA, Robbins GF, Zippin C, Lum D, Stearns M: Staging of cancer of the colon and cancer of the rectum. Cancer 43: 961–968, 1979PubMedGoogle Scholar
  33. 33.
    Hong FD, Huang H-JS, To H, Young L-JS, Oro A, Bookstein R, Lee EY-HP, Lee W-H: Structure of the human retinoblastoma gene. Proc Natl Acad Sci, USA 86: 5502–5506, 1989PubMedCrossRefGoogle Scholar
  34. 34.
    Mihara K, Cao X-R, Yen A, Chandler S, Driscoll B, Murphree AL, T'Ang A, Fung Y-KT: Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246: 1300–1303, 1989PubMedGoogle Scholar
  35. 35.
    Ludlow JW, DeCaprio JA, Huang C-M, Lee WH, Paucha E, Livingstone DM: SV40 large T antigen binds preferentiallyto an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56: 57–65, 1989PubMedCrossRefGoogle Scholar
  36. 36.
    DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Worms HP, Livingstone DM: The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58: 1085–1095, 1989PubMedCrossRefGoogle Scholar
  37. 37.
    Chen P-L, Scully P, Shew J-Y, Wang JYJ, Lee W-H: Phosphorylation of retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58: 1193–1198, 1989PubMedCrossRefGoogle Scholar
  38. 38.
    Buchkovich K, Duffy LA, Harlow E: The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58: 1097–1105, 1989PubMedCrossRefGoogle Scholar
  39. 39.
    Green MR: When the products of oncogenes and antioncogenes meet. Cell 56: 1–3, 1989PubMedCrossRefGoogle Scholar
  40. 40.
    Finlay CA, Hinds PW, Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell 57: 1083–1093, 1989PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Mohan L. Gope
    • 1
  • Melanie Chun
    • 2
  • Rajalakshmi Gope
    • 1
  1. 1.Creighton Cancer CenterCreighton UniversityOmahaUSA
  2. 2.Midwest Hypertension Research InstituteCreighton UniversityOmaha

Personalised recommendations