Molecular and Cellular Biochemistry

, Volume 79, Issue 2, pp 161–169 | Cite as

Identification and characterization of a Mg+2-dependent and an independent Ca+2-ATPase in microsomal membranes of rat testis

  • Subir K. NagDas
  • Shyamali Mukherjee
  • Barsanjit Mazumder
  • Parimal C. Sen
Original Article


Rat testicular microsomal membrane fraction contains both Mg+2-dependent and Mg+2-independent Ca+2-ATPase activity. The latter activity is about two times higher than the former. Calcium ion required for maximum activation of Mg+2-independent Ca+2-ATPase in 3.0 mM, whereas for the dependent one it is 2.5 mM. Both the enzymes are resistant to cold shock upto seven days. Histidine and imidazole buffers are found to be the most suitable for dependent and independent enzyme activities, respectively. The pH optima for dependent one is 7.5, whereas for the independent one it is 8.5. Temperature optima for the former is 37°C and for latter one it is 40°C. Among all the nuclestides tested, ATP is found to be the best substrate for both the enzymes. The optimum concentration of ATP for dependent and independent enzyme activities are 3.0 mM and 1.5 mM respectively. Divalent metal ions like Zn+2, Ba+2 and Mn+2 have been found to inhibit Mg+2-dependent Ca+2-ATPase activity whereas Mg+2-independent Ca+2-ATPase activity is inhibited by the divalent ions except zinc which is found to stimulate the enzyme activity. Both the enzymes are inhibited by vanadata, EDTA and EGTA. I50, for vanadate is 0.05 and 0.125 mM for dependent and independent activities, respectively. Sulfhydral groups modifying agents e.g., NEM, DTNB and chlorpromazine are found to affect the enzyme activities in different ways. Thus NEM and chlorpromazine are found to inhibit and DTNB stimulate the enzyme activities in both the cases.

Key words

Mg+2-dependent and Mg+2-independent Ca+2-ATPase microsomal membranes testis (rat) 



Tris (hydroxymethyl) aminoethane


N-2-hydroxyethyl piperizine-N′-2-ethane sulphonic acid


Piperizine-N, N′-bis (2-ethane sulphonic acid)


Ethylene Glycol-bis (β-amino ethyl ether) N, N, N′, N′-Tetraacetic Acid


Ethylene diamine tetraacetic acid, sodium salt


N-ethyl maleimide


5,5′-dithiobis-(2-nitrobenzoic acid)


chlorpromazine hydrochloride


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waites GMH. In: Ananda Kumar TC, Waites GMH (eds) Sperm Maturation and the Epididymis New Targets, Proceedings of Symposium of ‘Methods for the Regulation of Male Fertility’ Organized by ICMR, India and WHO. p 107, 1984Google Scholar
  2. 2.
    Rogers BJ, Bentwood BJ. In: Zaneveld LJD, Chatterton RD (eds) Biochemistry of Mammalian Reproduction. John Wiley & Sons, New York, pp 203–230, 1982Google Scholar
  3. 3.
    Babcock DF, First NL, Lardy HA: J Biol Chem 251:3881–3886, 1976PubMedGoogle Scholar
  4. 4.
    Breitbart H, Sterm B, Rubinstein S: Biochim Biophys Acta 728:349–355, 1983PubMedCrossRefGoogle Scholar
  5. 5.
    Williamson JR, Copper RH, Hoek JB: Biochim Biophys Acta 639:243–295, 1981PubMedGoogle Scholar
  6. 6.
    Charest R, Blackmore PF, Berthon B, Exton JH: J Biol Chem 258:8769–8773, 1983PubMedGoogle Scholar
  7. 7.
    Joseph SK, Williamson JR: J Biol Chem 258:10425–10432, 1983PubMedGoogle Scholar
  8. 8.
    Moore L, Chen T, Knapp HR, Landon EJ: J Biol Chem 250:4562–4568, 1975PubMedGoogle Scholar
  9. 9.
    Robinson JD: Arch Biochem Biophys 176:366–374, 1976PubMedCrossRefGoogle Scholar
  10. 10.
    Moore L, Fitzpatrick DF, Chen TS, Landon EJ: Biochim Biophys Acta 345:405–418, 1974CrossRefGoogle Scholar
  11. 11.
    Roblee LS, Shepro D, Belamarich FA: J Gen Physiol 61:462–481, 1973CrossRefGoogle Scholar
  12. 12.
    Jackowski S, Petro K, Sha'afi RI: Biochim Biophys Acta 558:348–352, 1979PubMedCrossRefGoogle Scholar
  13. 13.
    Shami Y, Radde IC: Biochim Biophys Acta 249:345–352, 1971PubMedCrossRefGoogle Scholar
  14. 14.
    Vijayasarathy S, Shivaji S, Balaram P: FEBS Letts 114:45–47, 1980CrossRefGoogle Scholar
  15. 15.
    Schneider C, Mottola C, Romeo D: Biochem J 182:655–660, 1979PubMedGoogle Scholar
  16. 16.
    Gupta RP, Ventitasubramanian TA: Ind J Biochem Biophys 20:381–385, 1983Google Scholar
  17. 17.
    Robinson JD: Biochemistry 6:3250–3258, 1967PubMedCrossRefGoogle Scholar
  18. 18.
    Sen PC, Ray TK: Arch Biochem Biophys 198:548–555, 1979PubMedCrossRefGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: J Biol Chem 193:265–275, 1951PubMedGoogle Scholar
  20. 20.
    Nandi J, Ray TK, Sen PC: Biochim Biophys Acta 646:457–464, 1981PubMedCrossRefGoogle Scholar
  21. 21.
    Sen PC, Kapakos JG, Steinberg M: Arch Biocbem Biophys 211:652–662, 1981CrossRefGoogle Scholar
  22. 22.
    Aronson Jr NN, Touster O: Meth Enzym 31:93–94, 1974Google Scholar
  23. 23.
    Sulkowski E, Bjork W Laskowski M: J Biol Chem 238:2477–2486, 1963PubMedGoogle Scholar
  24. 24.
    Smith LL. In: Glick D (ed) Methods of Biochemical Analysis. Wiley (Interscience) New York 2:42, 1955Google Scholar
  25. 25.
    Polakoski KL, McRorie RA: J Biol Chem 248:8183–8188, 1973PubMedGoogle Scholar
  26. 26.
    26.McRorie RA, Turner RB, Bradford MM, Williams WL: Biochem Biophys Res Commun 71:492–498, 1976PubMedCrossRefGoogle Scholar
  27. 27.
    Gilkey JC, Jaffe LF, Ridgeway EB, Reynolds GT J Cell Biol 76:448–466, 1978PubMedCrossRefGoogle Scholar
  28. 28.
    Green DPL. In: Johnson MH (eds) Development in Mammals. North-Holland, Amsterdam, pp 65–82, 1978Google Scholar
  29. 29.
    Yamamoto T, Tonomura Y: J Biochem (Tokyo) 62:558–575, 1967Google Scholar
  30. 30.
    Wolf HU: Biochim Biophys Acta 266:361–375, 1972PubMedCrossRefGoogle Scholar
  31. 31.
    Robinson JD: FEBS Letts 87:261–264, 1978CrossRefGoogle Scholar
  32. 32.
    Black BL, McDonald JM, Jarett L: Arch Biochem Biophys 199:92–102, 1980PubMedCrossRefGoogle Scholar
  33. 33.
    Wuytack F, Casteels R: Biochim Biophys Acta 595:257–263, 1980PubMedCrossRefGoogle Scholar
  34. 34.
    Mukherjee S, Mazumder B, Sen PC: Ind J Biochem Biophys 24:103–105, 1987Google Scholar
  35. 35.
    Haaker H, Racker E: J Biol Chem 254:6598–6604, 1979PubMedGoogle Scholar
  36. 36.
    O'Neal SG, Rhoads DB, Racker E: Biochem Biophys Res Commun 89:845–850, 1979PubMedCrossRefGoogle Scholar
  37. 37.
    Stekhoven FS, Bonting SL: Physiol Rev 61:1–76, 1981Google Scholar
  38. 38.
    Akera T, Brody TM: Mol. Pharmakol 6:557–566, 1970Google Scholar
  39. 39.
    Balser HD, Makinose M, Fiehn W, Hasselbach W: Naunyn Schmiedebergs Arch Pharmakol Exp Pathol 260:444–455, 1968CrossRefGoogle Scholar
  40. 40.
    Schoot BM, Depont JJHHM, Bonting SL: Biochim Biophys Acta 522:602–613, 1978PubMedGoogle Scholar
  41. 41.
    Yamada S, Ikemoto N: J Biol Chem 253:6801–6807, 1978PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers 1988

Authors and Affiliations

  • Subir K. NagDas
    • 1
  • Shyamali Mukherjee
    • 1
  • Barsanjit Mazumder
    • 1
  • Parimal C. Sen
    • 1
  1. 1.Department of ChemistryBose InstituteCalcuttaIndia

Personalised recommendations