Skip to main content
Log in

Characterization of Novikoff hepatoma small RNAs homologous to repetitive DNAs

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Three minor small RNA species from Novikoff hepatoma cells, with homology to repetitive DNA sequences, have been identified and characterized. These small RNAs, designated 5.1S, 6S and T3 RNAs, show homology to Alu 1, Alu 2, and Alu 3 sequences, respectively. 6S and T3 RNAs were found both in the nucleus and cytoplasm, whereas 5.1S RNA was not found in the nucleus. Neural tissues were found to contain a 6S-sized BC1 RNA with homology to I.D. sequences [19]; in contrast, the current study shows that Novikoff hepatoma cells contain a 75–80 nucleotide long (T3) RNA, homologous to I.D. sequences. These data suggest that BCl and T3 small RNAs, homologous to I.D. sequences, are expressed in a tissue-specific manner. These results also show that in addition to the abundant 7SL, 4.5S and 4.5S1 RNAs having homology to repetitive DNA, Novikoff hepatoma cells also contain several minor small RNAs with homology to repetitive sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodnett JL, Busch H: Isolation and characterization of uridylic acid-rich 7S ribonucleic acid of rat liver nuclei. J Biol Chem 243: 6334–6342, 1968

    PubMed  CAS  Google Scholar 

  2. Weinberg RA, Penman S: Small molecular weight monodisperse nuclear RNA. J Mol Biol 38: 289–304, 1968

    Article  PubMed  CAS  Google Scholar 

  3. Reddy R, Busch H: Small nuclear RNAs and RNA processing, in Prog in Nucl Acids Res and Mol Biol 30: 127–162, 1983

    Article  CAS  Google Scholar 

  4. Riedel N, Wise JA, Swerdlow H, Mak A, Guthrie C: Small nuclear RNAs fromSaccharomyces cerevisiae: unexpected diversity in abundance, size and molecular complexity. Proc Natl Acad Sci USA 83: 8097–8101, 1986

    Article  PubMed  CAS  Google Scholar 

  5. Lerner MR, Boyle JA, Mount S, Wolin S Steitz JA: Are snRNPs involved in splicing? Nature (Lond) 283: 220–224, 1980

    Article  CAS  Google Scholar 

  6. Steitz JA: Small ribonucleoproteins from eukaryotes: structures and roles in RNA biogenesis. Cold Spring Harbor Symp Quant Biol XLVII: 893–900, 1983

    Google Scholar 

  7. Maniatis, T, Reed R: The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature (Lond) 325: 673–678, 1987

    Article  CAS  Google Scholar 

  8. Walter P, Blobel G: Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature (Lond) 299: 691–698, 1982

    Article  CAS  Google Scholar 

  9. Zieve, G: Two groups of small stable RNAs. Cell 25: 296–297, 1981

    Article  PubMed  CAS  Google Scholar 

  10. Busch H, Reddy R, Rothblum L, Choi YC: SnRNAs, SnRNPs and RNA processing. Ann Rev Biochem 51: 617–654, 1982

    Article  PubMed  CAS  Google Scholar 

  11. Jelinek WR, Schmid CW: Repetitive sequences in eukaryotic DNA and their expression. Ann Rev Biochem 51: 813–844, 1982

    Article  PubMed  CAS  Google Scholar 

  12. Rogers JH: The origin and evolution of retroposons. Int Rev Cytol 93: 187–279, 1985

    PubMed  CAS  Google Scholar 

  13. Weiner AM, Deininger P, Efstratiadis A: Nonviral retroposons: genes, pseudogenes, and transposable elements generated by reverse flow of genetic information. Ann Rev Biochem 55: 631–661, 1987

    Article  Google Scholar 

  14. Singer M: Highly repeated sequences in mammalian genomes. Int Rev cytol 76: 67–112, 1982

    Article  PubMed  CAS  Google Scholar 

  15. Jelinek WR, Leinwand L: Low molecular Weight RNAs hydrogen-bonded to nuclear and cytoplasmic poly A+-terminated RNA from cultured Chinese hamster ovary cells. Cell 15: 205–214, 1978

    Article  PubMed  CAS  Google Scholar 

  16. Weiner AM: An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive. DNA sequence family in the human genome. Cell 22: 209–218, 1980

    Article  PubMed  CAS  Google Scholar 

  17. Haynes S, and Jelinek WR: Low molecular weight RNAs transcribedin vitro by RNA polymerase III from Alu-type dispersed repeats in chinese hamster DNA are also foundin vivo. Proc Natl Acad Sci USA 78: 6130–6134, 1982

    Article  Google Scholar 

  18. Kramerov DA, Tillib SV, Lekash IV, Ryskov AP, and Georgiev GP: Biosynthesis and cytoplasmic distribution of small poly(A)-containing B2 RNA. Biochim Biophys Acta 824: 85–98, 1982

    Google Scholar 

  19. Sutcliffe JG, Milner RJ, Bllom FE, and Lerner RA: Identifier sequences are transcribed specifically in brain. Nature (Lond) 308: 237–241, 1984

    Article  CAS  Google Scholar 

  20. Higashi K, Adams H, Busch H: Base composition of fractions obtained from nuclei of Walker tumor isolated with the citric acid procedure. Cancer Res 26: 2196–2201, 1966

    PubMed  CAS  Google Scholar 

  21. Davis F, Gyorkey F, Busch R, Busch H: A nucleolar antigen found in several human tumors but not in nontumor tissues. Proc Natl Acad Sci USA 76: 892–896, 1979

    Article  PubMed  CAS  Google Scholar 

  22. Maniatis T, Fritsch E, Sambrook J: Molecular Cloning. (A laboratory manual). Cold Spring Harbor Laboratory Publication, 1982

  23. Mauritzen C, Choi Y, Busch H: Preparation of macromolecules of very high specific activity in tumor cellsin vitro. In: H Busch (ed) Methods Cancer Res. Academic Press, New York VI: 253–282, 1970

    Google Scholar 

  24. Kafatos FC, Jones CW, Efstratiadis A: Determination of nucleic acid sequence homologies and relative concentrations by dot hybridization procedure. Nucl Acids Res 7: 1541–1552, 1979

    PubMed  CAS  Google Scholar 

  25. Brownlee GG, Barrell B, Sanger F: The sequence of 5S ribonucleic acid. J Mol Biol 34: 379–412, 1968

    Article  PubMed  CAS  Google Scholar 

  26. Li W, Reddy R, Henning D, Epstein P, Busch H: Nucleotide sequence of 7S RNA: Homology to Alu DNA and La 4.5S RNA. J Biol Chem 257: 5136–5142, 1982

    PubMed  CAS  Google Scholar 

  27. Ullu E, Murphy S, Melli M: Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in an Alu sequence. Cell 29: 195–202, 1982

    Article  PubMed  CAS  Google Scholar 

  28. Singh K, Carey M, Saragosti S, Botchan M: Expression of enhanced levels of small RNA polymerase II transcripts encoded by the B2 repeats in simian virus 40-transformed mouse cells. Nature (Lond) 314: 553–556, 1985

    Article  CAS  Google Scholar 

  29. Reddy R: Compilation of small RNA sequences. Nucl Acids Res 14: r61-r72, 1986

    PubMed  CAS  Google Scholar 

  30. Gundelfinger ED, DiCarlo M, Zopf D, Melli M (1984). Structure and evolution of the 7SL RNA component of the signal recognition particle. EMBO J. 3: 2325–2332

    PubMed  CAS  Google Scholar 

  31. Zweib C: The secondary structure of the 7SL RNA in the signal recognition particle: functional implications. Nucl Acids Res 13: 6105–6125, 1985

    Google Scholar 

  32. McKinnon RD, Danielson P, Brow M, Bloom F, Sutcliffe G: Expression of small cytoplasmic transcripts of the rat identifier elementin vivo and in cultured cells. Molec Cell Biol 7: 2148–2154, 1987

    PubMed  CAS  Google Scholar 

  33. Sakamoto K, Okada N: Rat type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes. J Molec Evol 22: 134–140, 1985

    Article  PubMed  CAS  Google Scholar 

  34. Daniels GR, Deininger PL: Repeat sequence families derived from mammalian tRNA genes. Nature (Lond) 317: 819–822, 1985

    Article  CAS  Google Scholar 

  35. Kuchino Y, Boreck E, Grunberger D, Mushinskio, JF, Nishimura S: Changes of post-transcriptional modification of Wye base in tumor-specific tRNAPhe. Nucl Acids Res 10: 6421–6432, 1982

    PubMed  CAS  Google Scholar 

  36. Ullu E, Weiner AM: Upstream sequences modulate the internal promoter of the 7SL gene. Nature (Lond) 318: 371–374, 1985

    Article  CAS  Google Scholar 

  37. Khandekar P, Saidapet C, Krauskopf M, Zarraga A, Lin W, Mendola C, Siddiqui MAQ: Co-ordinate control of gene expression. Muscle-specific 7S RNA contains sequences homologous to 3′-untranslated regions of myosin genes and repetitive DNA. J Mol Biol 180: 417–435, 1984

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, R., Henning, D. & Suh, D. Characterization of Novikoff hepatoma small RNAs homologous to repetitive DNAs. Mol Cell Biochem 79, 125–132 (1988). https://doi.org/10.1007/BF02424554

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424554

Key words

Navigation