Fluctuating asymmetry and sexual selection

Abstract

Fluctuating asymmetry occurs when an individual is unable to undergo identical development on both sides of a bilaterally symmetrical trait. Fluctuating asymmetry measures the sensitivity of development to a wide array of genetic and environmental stresses. We propose that fluctuating asymmetry is used in many signalling contexts for assessment of an individual's ability to cope with its environment. We hypothesize that fluctuating asymmetry is used in sexual selection, both in fighting and mate choice, and in competition for access to resources. Evidence is reviewed showing that the patterns of fluctuating asymmetry in secondary sexual characters differ from those seen in other morphological traits. Secondary sexual characters show much higher levels of fluctuating asymmetry. Also, there is often a negative relationship between fluctuating asymmetry and the absolute size of ornaments, whereas the relationship is typically U-shaped in other morphological traits. The common negative relationship between fluctuating asymmetry and ornament size suggests that many ornaments reliably reflect individual quality.

This is a preview of subscription content, log in to check access.

References

  1. Alatalo, R. V., J. Höglund & A. Lundberg, 1988. Patterns of variation in tail ornament size in birds. Biol. J. Linn. Soc. 34: 363–374.

    Google Scholar 

  2. Andersson, M., 1982a. Sexual selection, natural selection and quality advertisement. Biol. J. Linn. Soc. 17: 375–393.

    Google Scholar 

  3. Andersson, M., 1982b. Female choice selects for extreme tail length in a widowbird. Nature, Lond. 299: 818–820.

    Article  Google Scholar 

  4. Andersson, M., 1986. Evolution of condition-dependent sex ornaments and mating preferences: sexual selection based on viability differences. Evolution 40: 804–820.

    Article  Google Scholar 

  5. Bailit, H. L., P. L. Workman, J. D. Niswander & C. J. MacLean, 1970. Dental asymmetry as an indicator of genetic and environmental conditions in human populations. Human Biol. 42: 626–638.

    CAS  PubMed  Google Scholar 

  6. Balmford, A. & A. Thomas, 1992. Swallowing ornamental asymmetry. Nature, Lond. 359: 487.

    Article  Google Scholar 

  7. Biémont, C., 1983. Homeostasis, enzymatic heterozygosity and inbreeding depression in natural populations ofDrosophila melanogaster. Genetica 61: 179–189.

    Article  Google Scholar 

  8. Boag, P. T. & P. R. Grant, 1981. Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galápagos. Science 214: 82–85.

    PubMed  Google Scholar 

  9. Borgia, G. & G. Wilkinson, 1992. Swallowing ornamental asymmetry. Nature, Lond. 359: 487–488.

    Article  Google Scholar 

  10. Brown, R. D., 1984. Antler Development in Cervidae. Caesar Kleberg Wildlife Research Institute, Kingsville.

    Google Scholar 

  11. Bubenik, G. A. & A. B. Bubenik, Eds., 1990. Horns, Pronghorns and Antlers. Springer-Verlag, New York.

    Google Scholar 

  12. Burley, N., S. C. Tidemann & K. Halupka, 1991. Bill colour and parasite levels of zebra finches, pp. 359–376 in Bird-Parasite Interactions: Ecology, Evolution and Behaviour, edited by J. E. Loye & M. Zuk. Oxford University Press, Oxford.

    Google Scholar 

  13. Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature, Lond. 325: 345–346.

    Article  CAS  Google Scholar 

  14. Coates, B. J., 1990. The Birds of Papua New Guinea, Volume II Passerines. Dove Publications, Queensland.

    Google Scholar 

  15. Conner, J., 1988. Field measurements of natural and sexual selection in the fungus beetle,Bolitotherus cornutus. Evolution 42: 736–749.

    Article  Google Scholar 

  16. Darwin, C., 1871. The Descent of Man, and Selection in Relation to Sex. John Murray, London.

    Google Scholar 

  17. Dawkins, M. S. & T. Guilford, 1991. The corruption of honest signalling. Anim. Behav. 41: 865–873.

    Article  Google Scholar 

  18. Delius, J. D. & G. Habers, 1978. Symmetry: Can pigeons conceptualize it? Behav. Biol. 22: 336–342.

    Article  CAS  PubMed  Google Scholar 

  19. Delius, J. D. & B. Nowak, 1982. Visual symmetry recognition by pigeons. Psychol. Res. 44: 199–212.

    Article  CAS  PubMed  Google Scholar 

  20. Eberhard, W., 1989. Animal Genitalia. Harvard Univ. Press, Cambridge.

    Google Scholar 

  21. Endler, J. A., 1983. Natural and sexual selection on colour patterns in poeciliid fishes. Environ. Biol. Fishes 8: 173–190.

    Article  Google Scholar 

  22. Evans, M. R. & A. L. R. Thomas, 1992. Aerodynamic and mechanical effects of elongated tails in the scarlet-tufted malachite sunbird: Measuring the cost of a handicap. Anim. Behav. 43: 337–347.

    Article  Google Scholar 

  23. Fisher, R. A., 1930. The genetical Theory of Natural Selection. Clarendon, Oxford.

    Google Scholar 

  24. Fisher, R. A. & S. B. Holt, 1944. The experimental modification of dominance in Danforth's short tailed mutant mice. Ann. Eugen. 12: 102–120.

    Google Scholar 

  25. Freeland, W. J., 1976. Pathogens and the evolution of primate sociality. Biotropica 8: 11–24.

    Article  Google Scholar 

  26. Freeland, W. J., 1981. Parasitism and behavioral dominance among male mice. Science, Wash. 213: 461–462.

    CAS  Google Scholar 

  27. Grafen, A., 1990a. Sexual selection unhandicapped by the Fisher process. J. theor. Biol. 144: 475–516.

    Google Scholar 

  28. Grafen, A., 1990b. Biological signals as handicaps. J. theor. Biol. 144: 517–546.

    CAS  PubMed  Google Scholar 

  29. Graham, J. H. & J. D. Felley, 1985. Genomic coadaptation and developmental stability within introgressed populations ofEnneacanthus gloriosus andE. obesus (Pisces, Centrarchidae). Evolution 39: 104–114.

    Article  Google Scholar 

  30. Hamilton, W. D. & M. Zuk, 1982. Heritable true fitness and bright birds: a role for parasites? Science, Wash. 218: 384–387.

    CAS  Google Scholar 

  31. Heywood, J. S., 1989. Sexual selection by the handicap mechanism. Evolution 43: 1387–1397.

    Article  Google Scholar 

  32. Hill, G. E., 1991. Plumage coloration is a sexually selected indicator of male quality. Nature, Lond. 350: 337–339.

    Article  Google Scholar 

  33. Hoelzer, G. A., 1989. The good parent process of sexual selection. Anim. Behav. 38: 1067–1078.

    Google Scholar 

  34. Hoffmann, A. A. & P. A. Parsons, 1989a. An integrated approach to environmental stress tolerance and life history variation: Desiccation tolerance inDrosophila. Biol. J. Linn. Soc. 37: 117–136.

    Article  Google Scholar 

  35. Hoffmann, A. A. & P. A. Parsons, 1989b. Selection for increased desiccation tolerance inDrosophila melanogaster: Additive genetic control and correlated responses to other stresses. Genetics 122: 837–845.

    CAS  PubMed  Google Scholar 

  36. Iwasa, Y., A. Pomiankowski & S. Nee, 1991. The evolution of costly mate preferences II. The handicap principle. Evolution 45: 1431–1442.

    Article  Google Scholar 

  37. Johnson, L. L. & M. S. Boyce, 1991. Female choice of males with low parasite loads in sage grouse, pp. 377–388 in Bird-Parasite Interactions: Ecology, Evolution and Behaviour, edited by J. E. Loye & M. Zuk. Oxford University Press, Oxford.

    Google Scholar 

  38. Jones, J. S., 1987. An asymmetrical view of fitness. Nature, Lond. 325: 298–299.

    Article  Google Scholar 

  39. Kat, P. W., 1982. The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae). Am. Nat. 119: 824–832.

    Article  Google Scholar 

  40. Kodric-Brown, A. & J. H. Brown, 1984. Truth in advertising: the kinds of traits favored by sexual selection. Am. Nat. 124: 303–323.

    Article  Google Scholar 

  41. Lande, R., 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78: 3721–3725.

    PubMed  Google Scholar 

  42. Leamy, L. & W. Atchley, 1985. Directional selection and developmental instability: Evidence from fluctuating asymmetry of morphometric characters in rats. Growth 49: 8–18.

    CAS  PubMed  Google Scholar 

  43. Leary, R. F. & F. W. Allendorf, 1989. Fluctuating asymmetry as an indicator of stress: Implications for conservation biology. Trends Ecol. Evol. 4: 214–217.

    Article  Google Scholar 

  44. Leary, R. F., F. W. Allendorf & R. L. Knudsen, 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature, Lond. 301: 71–72.

    Article  CAS  Google Scholar 

  45. Leary, R. F., F. W. Allendorf & R. L. Knudsen, 1984. Superior developmental stability of heterozygotes of enzyme loci in salmonid fishes. Am. Nat. 124: 540–541.

    Article  Google Scholar 

  46. Leary, R. F., F. W. Allendorf & R. L. Knudsen, 1985a. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.

    Article  Google Scholar 

  47. Leary, R. F., F. W. Allendorf & R. L. Knudsen, 1985b. Developmental instability and high meristic counts in interspecific hybrids of salmonid fishes. Evolution 39: 1318–1326.

    Article  Google Scholar 

  48. Lerner, I. M., 1954. Genetic Homeostasis. Oliver and Boyd, Edinburgh.

    Google Scholar 

  49. Livshits, G. & E. Kobyliansky, 1991. Fluctuating asymmetry as a possible measure of developmental homeostasis in humans: A review. Human Biol. 63: 441–466.

    CAS  PubMed  Google Scholar 

  50. Ludwig, W., 1932. Das Rechts-Links Problem im Tierreich und beim Menschen. Springer, Berlin.

    Google Scholar 

  51. Manning, J. T. & M. A. Hartley, 1991. Symmetry and ornamentation are correlated in the peacock's train. Anim. Behav. 42: 1020–1021.

    Article  Google Scholar 

  52. Markow, T. & J. P. Ricker, 1992. Male size, developmental stability, and mating success in natural populations of threeDrosophila species. Heredity 69: 122–127.

    PubMed  Google Scholar 

  53. Mather, K., 1953. Genetic control of stability in development. Heredity 7: 297–336.

    Google Scholar 

  54. Maynard Smith, J., 1978. The Evolution of Sex. Cambridge University Press, Cambridge.

    Google Scholar 

  55. Milkman, R., 1970. The genetic basis of natural variation inDrosophila melanogaster. Adv. Genet. 15: 55–114.

    CAS  PubMed  Article  Google Scholar 

  56. Mitton, J. B. & M. C. Grant, 1984. Associations among protein heterozygosity, growth rate and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.

    Article  Google Scholar 

  57. Møller, A. P., 1988. Female choice selects for male tail ornaments in the monogamous swallow. Nature, Lond. 332: 640–642.

    Article  Google Scholar 

  58. Møller, A. P., 1989. Viability costs of male tail ornaments in a swallow. Nature, Lond. 339: 132–135.

    Article  Google Scholar 

  59. Møller, A. P., 1990a. Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Anim. Behav. 40: 1185–1187.

    Article  Google Scholar 

  60. Møller, A. P., 1990b. Male tail length and female mate choice in the monogamous swallowHirundo rustica. Anim. Behav. 39: 458–465.

    Article  Google Scholar 

  61. Møller, A. P., 1991a. Sexual selection in the monogamous barn swallow (Hirundo rustica). I. Determinants of tail ornament size. Evolution 45: 1823–1836.

    Article  Google Scholar 

  62. Møller, A. P., 1991b. Sexual ornaments size and the cost of fluctuating asymmetry. Proc. R. Soc. Lond. B 243: 59–62.

    Google Scholar 

  63. Møller, A. P., 1992a. Patterns of fluctuating asymmetry in weapons: Evidence for reliable signalling of quality in beetle horns and bird spurs. Proc. R. Soc. Lond. B 248: 199–206.

    Google Scholar 

  64. Møller, A. P., 1992b. Parasites differentially increase the degree of fluctuating asymmetry in secondary sexual characters. J. evol. Biol. 5: 691–699.

    Article  Google Scholar 

  65. Møller, A. P., 1992c. Females prefer large and symmetrical ornaments. Nature, Lond. 357: 238–240.

    Article  Google Scholar 

  66. Møller, A. P., 1992d. Swallowing ornamental asymmetry. Nature, Lond. 359: 488.

    Article  Google Scholar 

  67. Møller, A. P., 1993a. Patterns of fluctuating asymmetry in sexual ornaments predict female choice. J. evol. Biol. (in press).

  68. Møller, A. P., 1993b. The function of symmetric flowers. Submitted to J. evol. Biol.

  69. Møller, A. P., 1993c. Symmetrical male sexual ornaments, paternal care, and offspring quality. Behav. Ecol. (in press).

  70. Møller, A. P., 1993d. Sexual selection in the barn swallow (Hirundo rustica). IV. Patterns of fluctuating asymmetry and selection against asymmetry. Evolution. (in press).

  71. Møller, A. P. & M. Eriksson, 1993a. Patterns of fluctuating asymmetry in flowers: Implications for sexual selection in plants. J. evol. Biol. (in press).

  72. Møller, A. P. & M. Eriksson, 1993b. Flower asymmetry and sexual selection in plants. Submitted to Ecology.

  73. Møller, A. P. & J. Höglund, 1991. Patterns of fluctuating asymmetry in avian feather ornaments: Implications for models of sexual selection. Proc. R. Soc. Lond. B 245: 1–5.

    Google Scholar 

  74. Møller, A. P. & J. Höglund, 1993. Fluctuating asymmetry and tail length in birds: Do long-tailed individuals always have less asymmetry? ms.

  75. Møller, A. P. & A. Pomiankowski, 1993. Why have animals got multiple sexual ornaments? Behav. Ecol. Sociobiol. 32: 167–176.

    Article  Google Scholar 

  76. Nur, N. & O. Hasson, 1984. Phenotypic plasticity and the handicap principle. J. theor. Biol. 110: 275–297.

    Google Scholar 

  77. Otronen, M., 1988. Intra- and intersexual interactions at breeding burrows in the horned beetle,Coprophanaeus ensifer. Anim. Behav. 36: 741–748.

    Google Scholar 

  78. Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: Measurement, analysis, pattern. Ann. Rev. Ecol. Syst. 17: 391–421.

    Article  Google Scholar 

  79. Parsons, P. A., 1962. Maternal age and developmental variability. J. Exp. Biol. 39: 251–260.

    CAS  PubMed  Google Scholar 

  80. Parsons, P. A., 1990. Fluctuating asymmetry: An epigenetic measure of stress. Biol. Rev. 65: 131–145.

    CAS  PubMed  Google Scholar 

  81. Petrie, M., T. R. Halliday & C. Sanders, 1990. Peahens prefer peacocks with elaborate trains. Anim. Behav. 41: 323–331.

    Article  Google Scholar 

  82. Pomiankowski, A., 1988. The evolution of female mate preferences for male genetic quality. Oxford Surv. Evol. Biol. 5: 136–184.

    Google Scholar 

  83. Pomiankowski, A., Y. Iwasa & S. Nee, 1991. The evolution of costly mate preferences. I. Fisher and biased mutation. Evolution 45: 1422–1430.

    Article  Google Scholar 

  84. Pomiankowski, A. & A. P. Møller, 1993. Fluctuating asymmetry and the strength of sexual selection. ms.

  85. Prout, T., 1962. The effects of stabilizing selection on the time of development inDrosophila melanogaster. Genet. Res. 3: 364–382.

    Article  Google Scholar 

  86. Reeve, E. C. R., 1960. Some genetic tests on asymmetry of sternopleural chaeta number inDrosophila. Genet. Res., Camb. 1: 151–172.

    Google Scholar 

  87. Rensch, B., 1958. Die Wirksamkeit ästhetischer Faktoren bei Wirbeltieren. Z. Tierpsychol. 15: 447–461.

    Google Scholar 

  88. Ryan, M. J., 1988. Energy, calling and selection. Am. Zool. 28: 885–898.

    Google Scholar 

  89. Sciulli, P. W., W. J. Doyle, C. Kelley, P. Siegel & M. I. Siegel, 1979. The interaction of stressors in the induction of increased levels of fluctuating asymmetry in the laboratory rat. Am. J. Phys. Anthropol. 50: 279–284.

    Article  CAS  PubMed  Google Scholar 

  90. Siegel, M. I. & W. J. Doyle, 1975. The differential effect of prenatal and postnatal audiogenic stress on fluctuating dental asymmetry. J. Exp. Zool. 191: 211–214.

    Article  CAS  PubMed  Google Scholar 

  91. Soulé, M. E., 1979. Heterozygosity and developmental stability: Another look. Evolution 33: 396–401.

    Article  Google Scholar 

  92. Soulé, M. E., 1982. Allomeric variation. 1. The theory and some consequences. Am. Nat. 120: 751–764.

    Article  Google Scholar 

  93. Soulé, M. E. & J. Cuzin-Roudy, 1982. Allomeric variation. 2. Developmental instability of extreme phenotypes. Am. Nat. 120: 765–786.

    Article  Google Scholar 

  94. Spurrier, M. F., M. S. Boyce & B. F. J. Manly, 1991. Effects of parasites on mate choice by captive sage grouse, pp. 389–398 in Bird-Parasite Interactions: Ecology, Evolution and Behaviour, edited by J. E. Loye & M. Zuk. Oxford University Press, Oxford.

    Google Scholar 

  95. Taylor, P. D. & G. C. Williams, 1982. The lek paradox is not resolved. Theor. Pop. Biol. 22: 392–409.

    Article  Google Scholar 

  96. Tebb, G. & J. M. Thoday, 1958. Stability in development and relational balance of X chromosomes inD. melanogaster. Nature, Lond. 174: 1109–1110.

    Google Scholar 

  97. Thoday, J. M., 1956. Balance, heterozygosity and developmental stability. Cold Spring Habor Symp. Quant. Biol. 21: 318–326.

    Google Scholar 

  98. Thoday, J. M., 1958. Homeostasis in a selection experiment. Heredity 12: 401–415.

    Google Scholar 

  99. Thornhill, R., 1992a. Fluctuating asymmetry and the mating system of the Japanese scorpionfly,Panorpa japonica. Anim. Behav. 44: 867–879.

    Article  Google Scholar 

  100. Thornhill, R., 1992b. Female preference for the pheromone of males with low fluctuating asymmetry in the Japanese scorpionfly (Panorpa japnica, Mecoptera). Behav. Ecol. 3: 277–283.

    Google Scholar 

  101. Thornhill, R. & P. Sauer, 1992. Genetic sire effects on the fighting ability of sons and daughters and mating success of sons in a scorpionfly. Anim. Behav. 43: 255–264.

    Article  Google Scholar 

  102. Valentine, D. W. & M. E. Soulé, 1973. Effect ofp,p′-DDT on developmental stability of pectoral fin rays in the grunion,Leuresthes tenius. Fishery Bull. 71: 920–921.

    Google Scholar 

  103. Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.

    Article  Google Scholar 

  104. Vehrencamp, S. L., J. W. Bradbury & R. M. Gibson, 1989. The energetic cost of display in male sage grouse. Anim. Behav. 38: 885–896.

    Article  Google Scholar 

  105. Vrijenhoek, R. C. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768–776.

    Article  Google Scholar 

  106. Zahavi, A., 1975. Mate selection — a selection for a handicap. J. theor. Biol. 53: 205–214.

    Article  CAS  PubMed  Google Scholar 

  107. Zahavi, A., 1987. The theory of signal selection and some of its implications, pp. 305–327 in International Symposium of Biological Evolution, edited by V. P. Delfino. Adriatic Editrice, Bari.

    Google Scholar 

  108. Zakharov, V. M., 1981. Fluctuating asymmetry as an index of developmental homeostasis. Genetiks (Belgrade) 13: 241–256.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Møller, A.P., Pomiankowski, A. Fluctuating asymmetry and sexual selection. Genetica 89, 267 (1993). https://doi.org/10.1007/BF02424520

Download citation

Key words

  • fluctuating asymmetry
  • heterozygosity
  • reliable signalling
  • sexual selection
  • stress