Advertisement

Genetica

, 89:267 | Cite as

Fluctuating asymmetry and sexual selection

  • A. P. Møller
  • A. Pomiankowski
Article

Abstract

Fluctuating asymmetry occurs when an individual is unable to undergo identical development on both sides of a bilaterally symmetrical trait. Fluctuating asymmetry measures the sensitivity of development to a wide array of genetic and environmental stresses. We propose that fluctuating asymmetry is used in many signalling contexts for assessment of an individual's ability to cope with its environment. We hypothesize that fluctuating asymmetry is used in sexual selection, both in fighting and mate choice, and in competition for access to resources. Evidence is reviewed showing that the patterns of fluctuating asymmetry in secondary sexual characters differ from those seen in other morphological traits. Secondary sexual characters show much higher levels of fluctuating asymmetry. Also, there is often a negative relationship between fluctuating asymmetry and the absolute size of ornaments, whereas the relationship is typically U-shaped in other morphological traits. The common negative relationship between fluctuating asymmetry and ornament size suggests that many ornaments reliably reflect individual quality.

Key words

fluctuating asymmetry heterozygosity reliable signalling sexual selection stress 

References

  1. Alatalo, R. V., J. Höglund & A. Lundberg, 1988. Patterns of variation in tail ornament size in birds. Biol. J. Linn. Soc. 34: 363–374.Google Scholar
  2. Andersson, M., 1982a. Sexual selection, natural selection and quality advertisement. Biol. J. Linn. Soc. 17: 375–393.Google Scholar
  3. Andersson, M., 1982b. Female choice selects for extreme tail length in a widowbird. Nature, Lond. 299: 818–820.CrossRefGoogle Scholar
  4. Andersson, M., 1986. Evolution of condition-dependent sex ornaments and mating preferences: sexual selection based on viability differences. Evolution 40: 804–820.CrossRefGoogle Scholar
  5. Bailit, H. L., P. L. Workman, J. D. Niswander & C. J. MacLean, 1970. Dental asymmetry as an indicator of genetic and environmental conditions in human populations. Human Biol. 42: 626–638.PubMedGoogle Scholar
  6. Balmford, A. & A. Thomas, 1992. Swallowing ornamental asymmetry. Nature, Lond. 359: 487.CrossRefGoogle Scholar
  7. Biémont, C., 1983. Homeostasis, enzymatic heterozygosity and inbreeding depression in natural populations ofDrosophila melanogaster. Genetica 61: 179–189.CrossRefGoogle Scholar
  8. Boag, P. T. & P. R. Grant, 1981. Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galápagos. Science 214: 82–85.PubMedGoogle Scholar
  9. Borgia, G. & G. Wilkinson, 1992. Swallowing ornamental asymmetry. Nature, Lond. 359: 487–488.CrossRefGoogle Scholar
  10. Brown, R. D., 1984. Antler Development in Cervidae. Caesar Kleberg Wildlife Research Institute, Kingsville.Google Scholar
  11. Bubenik, G. A. & A. B. Bubenik, Eds., 1990. Horns, Pronghorns and Antlers. Springer-Verlag, New York.Google Scholar
  12. Burley, N., S. C. Tidemann & K. Halupka, 1991. Bill colour and parasite levels of zebra finches, pp. 359–376 in Bird-Parasite Interactions: Ecology, Evolution and Behaviour, edited by J. E. Loye & M. Zuk. Oxford University Press, Oxford.Google Scholar
  13. Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature, Lond. 325: 345–346.CrossRefGoogle Scholar
  14. Coates, B. J., 1990. The Birds of Papua New Guinea, Volume II Passerines. Dove Publications, Queensland.Google Scholar
  15. Conner, J., 1988. Field measurements of natural and sexual selection in the fungus beetle,Bolitotherus cornutus. Evolution 42: 736–749.CrossRefGoogle Scholar
  16. Darwin, C., 1871. The Descent of Man, and Selection in Relation to Sex. John Murray, London.Google Scholar
  17. Dawkins, M. S. & T. Guilford, 1991. The corruption of honest signalling. Anim. Behav. 41: 865–873.CrossRefGoogle Scholar
  18. Delius, J. D. & G. Habers, 1978. Symmetry: Can pigeons conceptualize it? Behav. Biol. 22: 336–342.CrossRefPubMedGoogle Scholar
  19. Delius, J. D. & B. Nowak, 1982. Visual symmetry recognition by pigeons. Psychol. Res. 44: 199–212.CrossRefPubMedGoogle Scholar
  20. Eberhard, W., 1989. Animal Genitalia. Harvard Univ. Press, Cambridge.Google Scholar
  21. Endler, J. A., 1983. Natural and sexual selection on colour patterns in poeciliid fishes. Environ. Biol. Fishes 8: 173–190.CrossRefGoogle Scholar
  22. Evans, M. R. & A. L. R. Thomas, 1992. Aerodynamic and mechanical effects of elongated tails in the scarlet-tufted malachite sunbird: Measuring the cost of a handicap. Anim. Behav. 43: 337–347.CrossRefGoogle Scholar
  23. Fisher, R. A., 1930. The genetical Theory of Natural Selection. Clarendon, Oxford.Google Scholar
  24. Fisher, R. A. & S. B. Holt, 1944. The experimental modification of dominance in Danforth's short tailed mutant mice. Ann. Eugen. 12: 102–120.Google Scholar
  25. Freeland, W. J., 1976. Pathogens and the evolution of primate sociality. Biotropica 8: 11–24.CrossRefGoogle Scholar
  26. Freeland, W. J., 1981. Parasitism and behavioral dominance among male mice. Science, Wash. 213: 461–462.Google Scholar
  27. Grafen, A., 1990a. Sexual selection unhandicapped by the Fisher process. J. theor. Biol. 144: 475–516.Google Scholar
  28. Grafen, A., 1990b. Biological signals as handicaps. J. theor. Biol. 144: 517–546.PubMedGoogle Scholar
  29. Graham, J. H. & J. D. Felley, 1985. Genomic coadaptation and developmental stability within introgressed populations ofEnneacanthus gloriosus andE. obesus (Pisces, Centrarchidae). Evolution 39: 104–114.CrossRefGoogle Scholar
  30. Hamilton, W. D. & M. Zuk, 1982. Heritable true fitness and bright birds: a role for parasites? Science, Wash. 218: 384–387.Google Scholar
  31. Heywood, J. S., 1989. Sexual selection by the handicap mechanism. Evolution 43: 1387–1397.CrossRefGoogle Scholar
  32. Hill, G. E., 1991. Plumage coloration is a sexually selected indicator of male quality. Nature, Lond. 350: 337–339.CrossRefGoogle Scholar
  33. Hoelzer, G. A., 1989. The good parent process of sexual selection. Anim. Behav. 38: 1067–1078.Google Scholar
  34. Hoffmann, A. A. & P. A. Parsons, 1989a. An integrated approach to environmental stress tolerance and life history variation: Desiccation tolerance inDrosophila. Biol. J. Linn. Soc. 37: 117–136.CrossRefGoogle Scholar
  35. Hoffmann, A. A. & P. A. Parsons, 1989b. Selection for increased desiccation tolerance inDrosophila melanogaster: Additive genetic control and correlated responses to other stresses. Genetics 122: 837–845.PubMedGoogle Scholar
  36. Iwasa, Y., A. Pomiankowski & S. Nee, 1991. The evolution of costly mate preferences II. The handicap principle. Evolution 45: 1431–1442.CrossRefGoogle Scholar
  37. Johnson, L. L. & M. S. Boyce, 1991. Female choice of males with low parasite loads in sage grouse, pp. 377–388 in Bird-Parasite Interactions: Ecology, Evolution and Behaviour, edited by J. E. Loye & M. Zuk. Oxford University Press, Oxford.Google Scholar
  38. Jones, J. S., 1987. An asymmetrical view of fitness. Nature, Lond. 325: 298–299.CrossRefGoogle Scholar
  39. Kat, P. W., 1982. The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae). Am. Nat. 119: 824–832.CrossRefGoogle Scholar
  40. Kodric-Brown, A. & J. H. Brown, 1984. Truth in advertising: the kinds of traits favored by sexual selection. Am. Nat. 124: 303–323.CrossRefGoogle Scholar
  41. Lande, R., 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78: 3721–3725.PubMedGoogle Scholar
  42. Leamy, L. & W. Atchley, 1985. Directional selection and developmental instability: Evidence from fluctuating asymmetry of morphometric characters in rats. Growth 49: 8–18.PubMedGoogle Scholar
  43. Leary, R. F. & F. W. Allendorf, 1989. Fluctuating asymmetry as an indicator of stress: Implications for conservation biology. Trends Ecol. Evol. 4: 214–217.CrossRefGoogle Scholar
  44. Leary, R. F., F. W. Allendorf & R. L. Knudsen, 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature, Lond. 301: 71–72.CrossRefGoogle Scholar
  45. Leary, R. F., F. W. Allendorf & R. L. Knudsen, 1984. Superior developmental stability of heterozygotes of enzyme loci in salmonid fishes. Am. Nat. 124: 540–541.CrossRefGoogle Scholar
  46. Leary, R. F., F. W. Allendorf & R. L. Knudsen, 1985a. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.CrossRefGoogle Scholar
  47. Leary, R. F., F. W. Allendorf & R. L. Knudsen, 1985b. Developmental instability and high meristic counts in interspecific hybrids of salmonid fishes. Evolution 39: 1318–1326.CrossRefGoogle Scholar
  48. Lerner, I. M., 1954. Genetic Homeostasis. Oliver and Boyd, Edinburgh.Google Scholar
  49. Livshits, G. & E. Kobyliansky, 1991. Fluctuating asymmetry as a possible measure of developmental homeostasis in humans: A review. Human Biol. 63: 441–466.PubMedGoogle Scholar
  50. Ludwig, W., 1932. Das Rechts-Links Problem im Tierreich und beim Menschen. Springer, Berlin.Google Scholar
  51. Manning, J. T. & M. A. Hartley, 1991. Symmetry and ornamentation are correlated in the peacock's train. Anim. Behav. 42: 1020–1021.CrossRefGoogle Scholar
  52. Markow, T. & J. P. Ricker, 1992. Male size, developmental stability, and mating success in natural populations of threeDrosophila species. Heredity 69: 122–127.PubMedGoogle Scholar
  53. Mather, K., 1953. Genetic control of stability in development. Heredity 7: 297–336.Google Scholar
  54. Maynard Smith, J., 1978. The Evolution of Sex. Cambridge University Press, Cambridge.Google Scholar
  55. Milkman, R., 1970. The genetic basis of natural variation inDrosophila melanogaster. Adv. Genet. 15: 55–114.PubMedCrossRefGoogle Scholar
  56. Mitton, J. B. & M. C. Grant, 1984. Associations among protein heterozygosity, growth rate and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.CrossRefGoogle Scholar
  57. Møller, A. P., 1988. Female choice selects for male tail ornaments in the monogamous swallow. Nature, Lond. 332: 640–642.CrossRefGoogle Scholar
  58. Møller, A. P., 1989. Viability costs of male tail ornaments in a swallow. Nature, Lond. 339: 132–135.CrossRefGoogle Scholar
  59. Møller, A. P., 1990a. Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Anim. Behav. 40: 1185–1187.CrossRefGoogle Scholar
  60. Møller, A. P., 1990b. Male tail length and female mate choice in the monogamous swallowHirundo rustica. Anim. Behav. 39: 458–465.CrossRefGoogle Scholar
  61. Møller, A. P., 1991a. Sexual selection in the monogamous barn swallow (Hirundo rustica). I. Determinants of tail ornament size. Evolution 45: 1823–1836.CrossRefGoogle Scholar
  62. Møller, A. P., 1991b. Sexual ornaments size and the cost of fluctuating asymmetry. Proc. R. Soc. Lond. B 243: 59–62.Google Scholar
  63. Møller, A. P., 1992a. Patterns of fluctuating asymmetry in weapons: Evidence for reliable signalling of quality in beetle horns and bird spurs. Proc. R. Soc. Lond. B 248: 199–206.Google Scholar
  64. Møller, A. P., 1992b. Parasites differentially increase the degree of fluctuating asymmetry in secondary sexual characters. J. evol. Biol. 5: 691–699.CrossRefGoogle Scholar
  65. Møller, A. P., 1992c. Females prefer large and symmetrical ornaments. Nature, Lond. 357: 238–240.CrossRefGoogle Scholar
  66. Møller, A. P., 1992d. Swallowing ornamental asymmetry. Nature, Lond. 359: 488.CrossRefGoogle Scholar
  67. Møller, A. P., 1993a. Patterns of fluctuating asymmetry in sexual ornaments predict female choice. J. evol. Biol. (in press).Google Scholar
  68. Møller, A. P., 1993b. The function of symmetric flowers. Submitted to J. evol. Biol.Google Scholar
  69. Møller, A. P., 1993c. Symmetrical male sexual ornaments, paternal care, and offspring quality. Behav. Ecol. (in press).Google Scholar
  70. Møller, A. P., 1993d. Sexual selection in the barn swallow (Hirundo rustica). IV. Patterns of fluctuating asymmetry and selection against asymmetry. Evolution. (in press).Google Scholar
  71. Møller, A. P. & M. Eriksson, 1993a. Patterns of fluctuating asymmetry in flowers: Implications for sexual selection in plants. J. evol. Biol. (in press).Google Scholar
  72. Møller, A. P. & M. Eriksson, 1993b. Flower asymmetry and sexual selection in plants. Submitted to Ecology.Google Scholar
  73. Møller, A. P. & J. Höglund, 1991. Patterns of fluctuating asymmetry in avian feather ornaments: Implications for models of sexual selection. Proc. R. Soc. Lond. B 245: 1–5.Google Scholar
  74. Møller, A. P. & J. Höglund, 1993. Fluctuating asymmetry and tail length in birds: Do long-tailed individuals always have less asymmetry? ms.Google Scholar
  75. Møller, A. P. & A. Pomiankowski, 1993. Why have animals got multiple sexual ornaments? Behav. Ecol. Sociobiol. 32: 167–176.CrossRefGoogle Scholar
  76. Nur, N. & O. Hasson, 1984. Phenotypic plasticity and the handicap principle. J. theor. Biol. 110: 275–297.Google Scholar
  77. Otronen, M., 1988. Intra- and intersexual interactions at breeding burrows in the horned beetle,Coprophanaeus ensifer. Anim. Behav. 36: 741–748.Google Scholar
  78. Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: Measurement, analysis, pattern. Ann. Rev. Ecol. Syst. 17: 391–421.CrossRefGoogle Scholar
  79. Parsons, P. A., 1962. Maternal age and developmental variability. J. Exp. Biol. 39: 251–260.PubMedGoogle Scholar
  80. Parsons, P. A., 1990. Fluctuating asymmetry: An epigenetic measure of stress. Biol. Rev. 65: 131–145.PubMedGoogle Scholar
  81. Petrie, M., T. R. Halliday & C. Sanders, 1990. Peahens prefer peacocks with elaborate trains. Anim. Behav. 41: 323–331.CrossRefGoogle Scholar
  82. Pomiankowski, A., 1988. The evolution of female mate preferences for male genetic quality. Oxford Surv. Evol. Biol. 5: 136–184.Google Scholar
  83. Pomiankowski, A., Y. Iwasa & S. Nee, 1991. The evolution of costly mate preferences. I. Fisher and biased mutation. Evolution 45: 1422–1430.CrossRefGoogle Scholar
  84. Pomiankowski, A. & A. P. Møller, 1993. Fluctuating asymmetry and the strength of sexual selection. ms.Google Scholar
  85. Prout, T., 1962. The effects of stabilizing selection on the time of development inDrosophila melanogaster. Genet. Res. 3: 364–382.CrossRefGoogle Scholar
  86. Reeve, E. C. R., 1960. Some genetic tests on asymmetry of sternopleural chaeta number inDrosophila. Genet. Res., Camb. 1: 151–172.Google Scholar
  87. Rensch, B., 1958. Die Wirksamkeit ästhetischer Faktoren bei Wirbeltieren. Z. Tierpsychol. 15: 447–461.Google Scholar
  88. Ryan, M. J., 1988. Energy, calling and selection. Am. Zool. 28: 885–898.Google Scholar
  89. Sciulli, P. W., W. J. Doyle, C. Kelley, P. Siegel & M. I. Siegel, 1979. The interaction of stressors in the induction of increased levels of fluctuating asymmetry in the laboratory rat. Am. J. Phys. Anthropol. 50: 279–284.CrossRefPubMedGoogle Scholar
  90. Siegel, M. I. & W. J. Doyle, 1975. The differential effect of prenatal and postnatal audiogenic stress on fluctuating dental asymmetry. J. Exp. Zool. 191: 211–214.CrossRefPubMedGoogle Scholar
  91. Soulé, M. E., 1979. Heterozygosity and developmental stability: Another look. Evolution 33: 396–401.CrossRefGoogle Scholar
  92. Soulé, M. E., 1982. Allomeric variation. 1. The theory and some consequences. Am. Nat. 120: 751–764.CrossRefGoogle Scholar
  93. Soulé, M. E. & J. Cuzin-Roudy, 1982. Allomeric variation. 2. Developmental instability of extreme phenotypes. Am. Nat. 120: 765–786.CrossRefGoogle Scholar
  94. Spurrier, M. F., M. S. Boyce & B. F. J. Manly, 1991. Effects of parasites on mate choice by captive sage grouse, pp. 389–398 in Bird-Parasite Interactions: Ecology, Evolution and Behaviour, edited by J. E. Loye & M. Zuk. Oxford University Press, Oxford.Google Scholar
  95. Taylor, P. D. & G. C. Williams, 1982. The lek paradox is not resolved. Theor. Pop. Biol. 22: 392–409.CrossRefGoogle Scholar
  96. Tebb, G. & J. M. Thoday, 1958. Stability in development and relational balance of X chromosomes inD. melanogaster. Nature, Lond. 174: 1109–1110.Google Scholar
  97. Thoday, J. M., 1956. Balance, heterozygosity and developmental stability. Cold Spring Habor Symp. Quant. Biol. 21: 318–326.Google Scholar
  98. Thoday, J. M., 1958. Homeostasis in a selection experiment. Heredity 12: 401–415.Google Scholar
  99. Thornhill, R., 1992a. Fluctuating asymmetry and the mating system of the Japanese scorpionfly,Panorpa japonica. Anim. Behav. 44: 867–879.CrossRefGoogle Scholar
  100. Thornhill, R., 1992b. Female preference for the pheromone of males with low fluctuating asymmetry in the Japanese scorpionfly (Panorpa japnica, Mecoptera). Behav. Ecol. 3: 277–283.Google Scholar
  101. Thornhill, R. & P. Sauer, 1992. Genetic sire effects on the fighting ability of sons and daughters and mating success of sons in a scorpionfly. Anim. Behav. 43: 255–264.CrossRefGoogle Scholar
  102. Valentine, D. W. & M. E. Soulé, 1973. Effect ofp,p′-DDT on developmental stability of pectoral fin rays in the grunion,Leuresthes tenius. Fishery Bull. 71: 920–921.Google Scholar
  103. Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.CrossRefGoogle Scholar
  104. Vehrencamp, S. L., J. W. Bradbury & R. M. Gibson, 1989. The energetic cost of display in male sage grouse. Anim. Behav. 38: 885–896.CrossRefGoogle Scholar
  105. Vrijenhoek, R. C. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768–776.CrossRefGoogle Scholar
  106. Zahavi, A., 1975. Mate selection — a selection for a handicap. J. theor. Biol. 53: 205–214.CrossRefPubMedGoogle Scholar
  107. Zahavi, A., 1987. The theory of signal selection and some of its implications, pp. 305–327 in International Symposium of Biological Evolution, edited by V. P. Delfino. Adriatic Editrice, Bari.Google Scholar
  108. Zakharov, V. M., 1981. Fluctuating asymmetry as an index of developmental homeostasis. Genetiks (Belgrade) 13: 241–256.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • A. P. Møller
    • 1
  • A. Pomiankowski
    • 1
  1. 1.Department of Genetics and BiometryUniversity College LondonLondonUK

Personalised recommendations