Skip to main content
Log in

Shaping intraspecific variation: Development, ecology and the evolution of morphology and life history variation in tiger salamanders

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The tiger salamander,Ambystoma tigrinum, is a geographically widespread, morphologically variable, polytipic species. It is among the most variable species of salamanders in morphology and life history with two larval morphs (typical and cannibal) and three adult morphs (metamorphosed, typical branchiate, cannibal branchiate) that vary in frequency between subspecies and between populations within subspecies. We report morphometric evidence suggesting that branchiate cannibals arose through intraspecific change in the onset or timing of development resulting in the wider head and hypertrophied tooth-bearing skull bones characteristic of this phenotype. We also quantified bilateral symmetry of gill raker counts and abnormalities, then evaluated fluctuating asymmetry as a measure of the developmental stability of each morph. There was a significant interaction between fluctuating asymmetry of developmental abnormalities in cannibals and typicals and the locality where they were collected, suggesting that relative stability of each phenotype could vary among populations. While altered timing of developmental events appears to have a role in the evolution and maintenance of morphs, novel phenotypes persist only under favorable ecological conditions. Predictability of the aquatic habitat, genetic variation, kinship, body size, intraspecific competition and predation all affect expression and survival of the morphs inA. tigrinum. This taxon provides an excellent model for understanding the diversity and complexity of developmental and ecological variables controlling the evolution and maintenance of novel phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberch, P., S. J. Gould, G. F. Oster & D. B. Wake, 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296–318.

    Google Scholar 

  • Alexander, R. D. & R. S. Bigelow, 1960. Allochronic speciation in field crickets and a new species,Acheta veletis. Evolution 14: 334–346.

    Article  Google Scholar 

  • Baird, D., 1965. Paleozoic lepospondyl amphibians. Amer. Zool. 5: 287–294.

    Google Scholar 

  • Begun, D. J. & J. P. Collins, 1992. Biochemical plasticity in the Arizona tiger salamander (Ambystoma tigrinum nebulosum). J. Heredity 83: 224–227.

    CAS  Google Scholar 

  • Berna, H., 1990. Ecology and life history of the tiger salamander,Ambystoma tigrinum nebulosum Hallowell, on the Kaibab Plateau. M.S. thesis, Arizona State University.

  • Bolt, J. R., 1979.Amphibamus grandiceps as a juvenile dissorophid: evidence and implications, pp. 529–563 in Mazon Creek Fossils, edited by M. H. Nitecki. Academic Pr., NY.

    Google Scholar 

  • Bookstein, F. L., B. Chernoff, R. L. Elder, J. M. Humphries, G. R. Smith & R. E. Strauss, 1985. Morphometrics in Evolutionary Biology. Spec. Publ. no. 15. Acad. Nat. Sci. Phil.

  • Brandon, R. A., 1972. Hybridization between the Mexican salamandersAmbystoma dumerilii andAmbystoma mexicanum under laboratory conditions. Herpetologica 28: 199–207.

    Google Scholar 

  • Brandon, R. A., 1977. Interspecific hybridization among Mexican and United States salamanders of the genusAmbystoma under laboratory conditions. Herpetologica 33: 133–152.

    Google Scholar 

  • Burnaby, T. P., 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96–110.

    Google Scholar 

  • Cattell, R. B., 1966. The Scree Test for the number of factors. Multivar. Behav. Res. 1: 245–276.

    Article  Google Scholar 

  • Collins, J. P., 1981. Distribution, habitats and life history variation in the tiger salamander,Ambystoma tigrinum, in east-central and southeast Arizona. Copeia 1981: 666–675.

    Article  Google Scholar 

  • Collins, J. P. & J. R. Holomuzki, 1984. Intraspecific variation in diet within and between trophic morphs in larval tiger salamanders (Ambystoma tigrinum nebulosum). Canadian Journal of Zoology 62: 168–174.

    Article  Google Scholar 

  • Collins, J. P. & J. E. Cheek, 1983. Effect of food and density on development of typical and cannibalistic salamander larvae inAmbystoma tigrinum nebulosum. Amer. Zool. 23: 77–84.

    Google Scholar 

  • Crump, M. L., 1992. Cannibalism in amphibians, pp. 256–276 in Cannibalism: Ecology and Evolution among Diverse Taxa, edited by M. A. Elgar and B. J. Crespi. Oxford University Press, Oxford, UK.

    Google Scholar 

  • DeMar, R., 1968. The Permian labyrinthodont amphibianDissorophus multicinctus, and adaptations and phylogeny of the family Dissorophidae. J. Paleontology 42: 1210–1242.

    Google Scholar 

  • DeQueiroz, K., 1985. The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics. Syst. Zool. 34: 280–299.

    Article  Google Scholar 

  • Dobzhansky, Th., 1937. Genetics and the Origin of Species. Columbia Univ. Pr., NY.

    Google Scholar 

  • Duellman, W. E. & L. Treub, 1986. Biology of Amphibians. McGraw-Hill, NY.

    Google Scholar 

  • Edwards, J. L., 1976. Spinal nerves and their bearing on salamander phylogeny. J. Morph. 148: 305–328.

    Article  CAS  PubMed  Google Scholar 

  • Eldredge, N. & S. J. Gould, 1972. Punctuated equilibria: an alternative to phyletic gradualism, pp. 82–115 in Models in Paleobiology, edited by T. J. M. Schopf. Freeman, SF.

    Google Scholar 

  • Emerson, S. B., 1986. Heterochrony and frogs: the relationship of a life history trait to morphological form. Amer. Natur. 127: 167–183.

    Article  Google Scholar 

  • Estes, R., 1981. Teil 2. Gymnophiona, Caudata. Handbuch der Paläoherpetologie. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Fink, W. L., 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8: 254–264.

    Google Scholar 

  • Ford, E. B., 1965. Genetic Polymorphism. M.I.T. Pr., Cambridge.

    Google Scholar 

  • Gauch, H. G., Jr., 1982. Noise reduction by eigenvector ordination. Ecology 63: 1643–1649.

    Article  Google Scholar 

  • Gehlbach, F. R., 1965. The herpetology of the Zuni Mountains region, northwestern New Mexico. Proc. U. S. Nat. Mus. 116: 243–332.

    Google Scholar 

  • Gehlbach, F. R., 1967.Ambystoma tigrinum (Green). Tiger salamander. Catalogue of American Amphibians and Reptiles: 52.1–52.4.

  • Gould, S. J., 1977. Ontogeny and Phylogeny. Belknap Pr., Cambridge.

    Google Scholar 

  • Hecht, M. K., 1957. A case of parallel evolution in salamanders. Proc. Zool. Soc., Calcutta, Mookerjee Memor. 1957: 283–292.

    Google Scholar 

  • Holomuzki, J. R. & J. P. Collins, 1987. Trophic dynamics of a top predator,Ambystoma tigrinum nebulosum (Caudata: Ambystomatidae), in a lentic community. Copeia 1987: 949–957.

    Article  Google Scholar 

  • Humphries, J. M., F. L. Bookstein, B. Chernoff, G. R. Smith, R. L. Elder & S. G. Poss, 1981. Multivariate discrimination by shape in relation to size. Syst. Zool. 30: 291–308.

    Article  Google Scholar 

  • Johnson, R. A. & D. W. Wichern, 1982. Applied Multivariate Statistical Analysis. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Jolicoeur, P., 1963. The multivariate generalization of the allometry equation. Biometrics 19: 497–499.

    Google Scholar 

  • Jones, T. R., J. P. Collins, T. D. Kocher & J. B. Mitton, 1988. Systematic status and distribution ofAmbystoma tigrinum stebbinsi Lowe. Copeia: 621–635.

  • Kirkpatrick, M., 1982. Quantum evolution and punctuated equilibria in continuous genetic characters. Amer. Natur. 119: 833–848.

    Article  Google Scholar 

  • Kluge, A., 1984. The relevance of parsimony to phylogenetic inference, pp. 24–38 in Cladistics: Perspectives on the Reconstruction of Evolutionary History, edited by T. Duncan and T. Stuessy. Columbia Univ. Pr., NY.

    Google Scholar 

  • Kluge, A., 1985. Ontogeny and phylogenetic systematics. Cladistics 1: 13–27.

    Article  Google Scholar 

  • Kluge, A. & R. E. Strauss, 1985. Ontogeny and systematics. Ann. Rev. Ecol. Syst. 16: 247–268.

    Article  Google Scholar 

  • Knerer, G. & C. E. Atwood, 1973. Diprionid sawflies: polymorphism and speciation. Science 179: 1090–1099.

    PubMed  Google Scholar 

  • Lannoo, M. & M. Bachmann, 1984. Aspects of cannibalistic morphs in a population ofA. t. tigrinum larvae. Amer. Midl. Natur. 122: 103–109.

    Article  Google Scholar 

  • Lerner, I. M., 1954. Genetic Homeostasis. Dover, N.Y.

    Google Scholar 

  • Loeb, M. L. G., J. P. Collins & T. J. Maret, 1993, in press. The role of prey in controlling expression of a trophic polymorphism inAmbystoma tigrinum nebulosum. Functional Ecology: 29 pp. ms.

  • Mather, I., 1955. Polymorphism as an outcome of disruptive selection. Evolution 9: 52–61.

    Article  Google Scholar 

  • Mayr, E., 1942. Systematics and the Origin of Species. Columbia Univ. Pr., NY.

    Google Scholar 

  • Meyer, A., 1987. Phenotypic plasticity and heterochrony inCichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41: 1357–1369.

    Article  Google Scholar 

  • Milligan, B. G., 1986. Punctuated evolution induced by ecological change. Amer. Natur. 127: 522–532.

    Article  Google Scholar 

  • Minckley, W. L., D. A. Hendrickson & C. E. Bond, 1986. Geography of western North American freshwater fishes: description and relationships to intracontinental tectonism, pp. 519–613 in The Zoogeography of North American Freshwater Fishes, edited by C. H. Hocutt & E. O. Wiley. Wiley, NY.

    Google Scholar 

  • Nelson, G., 1978. Ontogeny, phylogeny, paleontology, and the biogenetic law. Syst. Zool. 27: 324–345.

    Article  Google Scholar 

  • Ohlandt, G., 1992. Microgeographic variation in life history ofAmbystoma tigrinum nebulosum in Arizona. M.S. thesis, Arizona State University.

  • Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. Syst. 17: 391–421.

    Article  Google Scholar 

  • Pedersen, S. C., 1991. Dental morphology of the cannibal morph in the tiger salamander,Ambystoma tigrinum. Amphibia-Reptilia 12: 1–14.

    Google Scholar 

  • Pfennig, D. W., M. L. G. Loeb & J. P. Collins, 1991. Pathogens as a factor limiting the spread of cannibalism in tiger salamanders. Oecologia 88: 161–166.

    Article  Google Scholar 

  • Pfennig, D. W. & J. P. Collins, 1993. Kinship affects morphogenesis in cannibalistic salamanders. Nature 362: 836–838.

    Article  CAS  PubMed  Google Scholar 

  • Pfennig, D. W., P. W. Sherman & J. P. Collins, 1993, in press. Kinship and cannibalism in polyphenic salamanders. Behavioral Ecology: 43 pp. ms.

  • Pierce, B. A., J. B. Mitton, L. Jacobson & F. L. Rose, 1983. Head shape and size in cannibal and noncannibal morphs of the tiger salamander from west Texas. Copeia 1983: 1006–1012.

    Article  Google Scholar 

  • Pimentel, R. A., 1979. Morphometrics. Kendall/Hunt, Dubuque.

    Google Scholar 

  • Powers, J. H., 1903. The causes of acceleration and retardation in the metamorphosis ofAmbystoma tigrinum: A preliminary report. Amer. Natur. 37: 385–410.

    Article  Google Scholar 

  • Powers, J. H., 1907. Morphological variation and its causes inAmbystoma tigrinum. Stud. Univ. Nebraska 7: 197–274.

    Google Scholar 

  • Regal, P. J., 1966. Feeding specializations and the classification of terrestrial salamanders. Evolution 20: 392–407.

    Article  Google Scholar 

  • Reilly, S. M., G. V. Lauder & J. P. Collins, 1992. Performance consequences of a trophic polymorphism: feeding behavior in typical and cannibal phenotypes ofAmbystoma tigrinum. Copeia 1992: 672–679.

    Article  Google Scholar 

  • Reyment, R. A., R. E. Blackith & N. A. Campbell, 1984. Multivariate Morphometrics.2nd ed. Acad. Pr., NY.

    Google Scholar 

  • Rohlf, F. J. & F. L. Bookstein, 1987. A comment on shearing as a method for ‘size correction’. Syst. Zool. 36: 356–367.

    Article  Google Scholar 

  • Rosenzweig, M. L., 1978. Competitive speciation. Biol. J. Linnean Soc. 10: 275–289.

    Google Scholar 

  • Roughgarden, J., 1972. Evolution of niche width. Amer. Natur. 106: 683–713.

    Article  Google Scholar 

  • Sage, R. D. & R. K. Selander, 1975. Trophic radiation through polymorphism in cichlid fishes. Proc. Nat. Acad. Sci. USA 72: 4660–4673.

    Google Scholar 

  • Seger, J., 1985. Intraspecific resource competition as a cause of sympatric speciation, pp. 43–53 in Essays in Honor of John Maynard Smith, edited by P. J. Greenwood, P. H. Harvey & M. Slatkin. Cambridge Univ. Pr., Cambridge.

    Google Scholar 

  • Shaffer, H. B., 1984a. Evolution in a paedomorphic lineage. I. An electrophoretic analysis of the Mexican ambystomatid salamanders. Evolution 38: 1194–1206.

    Article  Google Scholar 

  • Shaffer, H. B., 1984b. Evolution in a paedomorphic lineage. II. Allometry and form in the Mexican ambystomatid salamanders. Evolution 38: 1207–1218.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry, 2nd ed. Freeman, SF.

    Google Scholar 

  • Somers, K. M., 1986. Multivariate allometry and removal of size with principal components analysis. Syst. Zool. 35: 359–368.

    Article  Google Scholar 

  • Soulé, M. E. & J. Cuzin-Roudy, 1982. Allometric variation. 2. Developmental instability of extreme phenotypes. Amer. Natur. 120: 765–786.

    Article  Google Scholar 

  • Stanely, S. M., 1979. Macroevolution. Freeman, SF.

    Google Scholar 

  • Stevens, P. F., 1980. Evolutionary polarity of character states. Ann. Rev. Ecol. Syst. 11: 333–358.

    Article  Google Scholar 

  • Szarski, H., 1957. The origin of the larva and metamorphosis in Amphibia. Amer. Natur. 91: 281–301.

    Article  Google Scholar 

  • Szarski, H., 1962. The origin of the Amphibia. Q. Rev. Biol. 37: 189–241.

    Article  Google Scholar 

  • Thoday, J. M., 1953. Homeostasis in a selection experiment. Heredity 12: 401–415.

    Google Scholar 

  • Tihen, J., 1958. Comments on the osteology and phylogeny of ambystomatid salamanders. Bull. Florida State Mus. 3: 1–51.

    Google Scholar 

  • Vrijenhoek, R. C., 1984. Ecological differentiation among clones: the frozen niche variation model, pp. 217–231 in Population Biology and Evolution, edited by K. Wöhrmann & V. Loescheke. Springer-Verlag, Berlin.

    Google Scholar 

  • Waddington, C. H., 1957. The Strategy of the Genes. MacMillan, NY.

    Google Scholar 

  • West-Eberhard, M. J., 1986. Alternative adaptations, speciation, and phylogeny (a review). Proc. Nat. Acad. Sci. USA 83: 1388–1392.

    PubMed  Google Scholar 

  • White, M. J. D., 1978. Models of Speciation. Freeman, SF.

    Google Scholar 

  • Wiley, E. O., 1980. Phylogenetic systematics and vicariance biogeography. Syst. Bot. 5: 194–220.

    Article  Google Scholar 

  • Wiley, E. O., 1981. Phylogenetics: The Theory and Practice of Phylogenetic Systematics. Wiley, NY.

    Google Scholar 

  • Wright, S. W., 1968. Evolution and the Genetics of Populations. Vol 1. Genetic and Biometric Foundations. Univ. Chicago Pr., Chicago.

    Google Scholar 

  • Wright, S. W., 1978. Evolution and the Genetics of Populations. Vol 4. Variability within and among Natural Populations. Univ. Chicago Pr., Chicago.

    Google Scholar 

  • Wright, S. W., 1982. Character change, speciation, and the higher taxa. Evolution 36: 427–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, J.P., Zerba, K.E. & Sredl, M.J. Shaping intraspecific variation: Development, ecology and the evolution of morphology and life history variation in tiger salamanders. Genetica 89, 167–183 (1993). https://doi.org/10.1007/BF02424512

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424512

Key words

Navigation