Advertisement

Genetica

, Volume 89, Issue 1–3, pp 67–76 | Cite as

Modification of developmental instability and fitness: Malathion-resistance in the Australian sheep blowfly,Lucilia cuprina

  • J. A. McKenzie
  • K. O'Farrell
Article

Abstract

The evolution of resistance to malathion byLucilia cuprina initially results in an increase in fluctuating asymmetry. Resistant flies are at a selective disadvantage, relative to susceptibles, in the absence of the insecticide. A fitness/asymmetry modifier of diazinon-resistant phenotypes ameliorates these effects resulting in malathion-resistant phenotypes of relative fitness and asymmetry similar to susceptibles. For the nine genotypic combinations of the modifier and malathion-resistance alleles, developmental time increases linearly with increasing asymmetry. Percentage egg hatch decreases linearly with increasing asymmetry. The initially disruptive effect of the malathion-resistant allele was partially dominant, the effect of the modifier dominant. The results are discussed in terms of developmental perturbation, asymmetry estimation and relative fitness to consider whether it is adequate to use changes in fluctuating asymmetry alone as measures of developmental instability. It is suggested that in some circumstances antisymmetry may indicate developmental instability and that the diazinon/malathion-resistance systems inL. cuprina may allow the relative importance of genetical and/or environmental developmental perturbations to be ascertained.

Key words

Lucilia cuprina malathion-resistance fluctuating asymmetry fitness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artavanis-Tsakonas, S., 1988. The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends in Genetics 4: 95–101.CrossRefPubMedGoogle Scholar
  2. Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature 325: 345–346.CrossRefGoogle Scholar
  3. Clarke, G. M. & J. A. McKenzie, 1992. Coadaptation, developmental stability, and fitness of insecticide resistance genotypes in the Australian sheep blowfly, Lucilia cuprina: a review. Acta. Zool. Fennica 191: 107–110.Google Scholar
  4. Clarke, G. M. & L. J. McKenzie, 1992a. Fluctuating asymmetry as a quality control indicator for insect mass rearing processes. J. Econ. Entomol. (In Press).Google Scholar
  5. Clarke, G. M. & T. J. Ridsdill-Smith, 1990. The effect of avermectin B1, on developmental stability in the bush fly, Musca vetustissima, as measured by fluctuating asymmetry. Entomol. exp. appl. 54: 265–269.CrossRefGoogle Scholar
  6. Clarke, G. M., B. P. Oldroyd & P. Hunt, 1992. The genetic basis of developmental stability in Apis mellifera: heterozygosity versus genic balance. Evolution 46: 753–762.CrossRefGoogle Scholar
  7. Graham, J. H., 1992. Genomic coadaptation and developmental stability in hybrid zones. Acta Zool. Fennica 191: 121–131.Google Scholar
  8. Graham, J. H., D. C. Freeman & J. M. Emlen, 1993. Antisymmetry, directional asymmetry and dynamic morphogenesis. Genetica (This Volume).Google Scholar
  9. Hoffmann, A. A. & P. A. Parsons, 1991. Evolutionary genetics and environmental stress. Oxford University Press, Oxford.Google Scholar
  10. Hortsch, M. & C. S. Goodman, 1991. Cell and substrate adhesion molecules in Drosophila. Ann. Rev. Cell. Biol. 7: 505–557.PubMedGoogle Scholar
  11. Hughes, P. B. & A. L. Devonshire, 1982. The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 18: 289–297.CrossRefGoogle Scholar
  12. Hughes, P. B. & J. A. McKenzie, 1987. Insecticide resistance in the Australian sheep blowfly, Lucilia cuprina: speculation, science and strategies, pp. 162–177 in: Combating resistance to Xenobiotics. Biological and chemical approaches, edited by M. G. Ford, D. W. Hollowman, B. P. S. Khambay and R. M. Sawicki, Ellis Horwood, Chichester.Google Scholar
  13. Hughes, P. B., P. E. Green & K. G. Reichmann, 1984. Specific resistance to malathion in laboratory and field populations of the Australian sheep blowfly Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Entomol. 77: 1400–1404.PubMedGoogle Scholar
  14. Leary, R. F. & F. W. Allendorf, 1989. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4: 214–217.CrossRefGoogle Scholar
  15. Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1992. Genetic, environmental and developmental causes of meristic variation in rainbow trout. Acta Zool. Fennica 191: 79–95.Google Scholar
  16. Markow, T. A. & J. P. Ricker, 1991. Developmental stability in hybrids between the sibling species pair, Drosophila melanogaster and Drosophila simulans. Genetica 84: 115–121.CrossRefPubMedGoogle Scholar
  17. Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup & L. Wolpert, 1985. Developmental constraints and evolution Quart. Rev. Biol. 60: 266–287.Google Scholar
  18. Møller, A. P. & J. Höglund, 1992. Patterns of fluctuating asymmetry in avian feather ornaments: implications for models of sexual selection. Proc. Roy. Soc. Lond. B. 245: 1–5.Google Scholar
  19. McKenzie, J. A., 1987. Insecticide resistance in the Australian sheep blowfly - messages for pesticide usage. Chem. Ind. 8: 266–269.Google Scholar
  20. McKenzie, J. A., 1990. Selection at the dieldrin resistance locus in overwintering populations of Lucilia cuprina (Wiedemann). Aust. J. Zool. 38: 493–501.CrossRefGoogle Scholar
  21. McKenzie, J. A., 1993. Measuring fitness and intergenic interactions: The evolution of resistance to diazinon in Lucilia cuprina. Genetica (In Press).Google Scholar
  22. McKenzie, J. A. & G. M. Clarke, 1988. Diazinon resistance, fluctuating asymmetry and fitness in the Australian sheep blowfly, Lucilia cuprina. Genetics 120: 213–220.Google Scholar
  23. McKenzie, J. A. & A. Y. Game, 1987. Diazinon resistance in Lucilia cuprina; mapping of a fitness modifier. Heredity 59: 381–391.Google Scholar
  24. McKenzie, J. A., P. Batterham & L. Baker, 1990. Fitness and asymmetry modification as an evolutionary process. A study in the Australian sheep blowfly, Lucilia cuprina and Drosophila melanogaster, pp. 57–73. In: Ecological and evolutionary genetics of Drosophila, edited by J. S. F. Baker, W. T. Starmer and R. J. MacIntyre, Plenum Press, New York.Google Scholar
  25. McKenzie, J. A., J. M. Dearn & M. J. Whitten, 1980. Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blowfly, Lucilia cuprina. Aust. J. Biol. Sci. 33: 85–95.PubMedGoogle Scholar
  26. McKenzie, J. A., J. M. Whitten & M. A. Adena, 1982. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity 49: 1–9.Google Scholar
  27. Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. System. 17: 391–421.CrossRefGoogle Scholar
  28. Palmer, A. R. & C. Strobeck, 1992. Fluctuating asymmetry as a measure of developmental stability: Implications of non-normal distributions and the power of statistical tests. Acta Zool. Fennica 191: 57–72.Google Scholar
  29. Parker, A. G., R. J. Russell, A. C. Delves & J. G. Oakeshott, 1991. Biochemistry and physiology of esterases in organo-phosphate-susceptible and -resistant strains of the Australian sheep blowfly, Lucilia cuprina. Pest. Biochem. Physiol. 41: 305–318.CrossRefGoogle Scholar
  30. Parsons, P. A., 1990. Fluctuating asymmetry: an epigenetic measure of stress. Biol. Rev. 65: 131–145.PubMedGoogle Scholar
  31. Parsons, P. A., 1991. Evolutionary rates: stress and species boundaries. Ann. Rev. Ecol. System. 22: 1–18.CrossRefGoogle Scholar
  32. Parsons, P. A., 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68: 361–364.PubMedGoogle Scholar
  33. Raftos, D. A., 1986. The biochemical basis of malathion resistance in the Australian sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 26: 302–309.CrossRefGoogle Scholar
  34. Raftos, D. A. & P. B. Hughes, 1986. Genetic basis of a specific resistance to malathion in the Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Ent. 79: 553–557.Google Scholar
  35. Roush, R. T. & J. A. McKenzie, 1987. Ecological genetics of insecticide and acaricide resistance. Ann. Rev. Ent. 32: 361–380.CrossRefGoogle Scholar
  36. Russell, R. J., M. M. Dumancic, G. G. Foster, G. L. Weller, M. J. Healy & J. G. Oakeshott, 1990. Insecticide resistance as a model system for studying molecular evolution, pp. 293–314. In: Ecological and evolutionary genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer and R. J. MacIntyre, Plenum Press, New York.Google Scholar
  37. Scharloo, W., 1991. Canalization: genetic and developmental aspects. Ann. Rev. Ecol. System. 22: 65–93.CrossRefGoogle Scholar
  38. Sokal, R. R. & F. J. Rohlf, 1981. Biometry, 2nd edn., W. H. Freeman, San Francisco.Google Scholar
  39. Templeton, A. R., H. Hollocher, S. Lawler & J. S. Johnston, 1990. The ecological genetics of abnormal abdomen in Drosophila mercatorum, pp. 17–35. In: Ecological and evolutionary genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer and R. J. MacIntyre, Plenum Press, New York.Google Scholar
  40. Thornhill, R., 1992. Fluctuating asymmetry, interspecific agression and male mating tactics in two species of Japanese scorpion flies. Behav. Ecol. Sociobiol. 30: 357–363.CrossRefGoogle Scholar
  41. Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.CrossRefGoogle Scholar
  42. Whitten, M. J., J. M. Dearn & J. A. McKenzie, 1980. Field studies on insecticide resistance in the Australian sheep blowfly, Lucilia cuprina. Aust. J. Biol. Sci. 33: 725–735.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • J. A. McKenzie
    • 1
  • K. O'Farrell
    • 1
  1. 1.Department of GeneticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations