Skip to main content
Log in

Null alleles at two lactate dehydrogenase loci in rainbow trout are associated with decreased developmental stability

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Previous studies with rainbow trout (Oncorhynchus mykiss) have shown that allozymic heterozygotes have increased developmental stability, as measured by reduced fluctuating bilateral asymmetry. In this paper, we examine the phenotypic effects of null alleles at two lactate dehydrogenase (LDH) loci. If the association between allozymic heterozygosity and developmental stability is due largely to linked chromosomal segments, then we would expect null allele heterozygotes to have increased developmental stability. In contrast, heterozygotes for LDH null alleles in three populations have reduced developmental stability. This suggests that the reduction in enzyme activity at these loci is having a deleterious effect on development that is strong enough to mask any beneficial effects that may be associated with heterozygosity for these chromosomal segments. The LDH loci examined in this study are members of two different paralogous pairs of duplicate genes produced by the polyploidization of the ancestral salmonid genome. The apparent deleterious effects of these null alleles in heterozygotes could retard the possible loss of duplicate gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M. Y. & C. C. Lindsey, 1974. Heritable and temperature-induced meristic variation in the medaka,Oryzias latipes. Canad. J. Zool. 52: 959–976.

    CAS  Google Scholar 

  • Allendorf, F. W., D. M. Espeland, D. T. Scow & S. Phelps, 1980. Coexistence of native and introduced rainbow trout in the Kootenai River drainage. Proc. Montana Acad. Sci. 39: 28–36.

    Google Scholar 

  • Allendorf, F. W., K. L. Knudsen & G. M. Blake, 1982. Frequencies of null alleles at enzyme loci in natural populations of ponderosa and red pine. Genetics 100: 497–504.

    PubMed  Google Scholar 

  • Allendorf, F. W., K. L. Knudsen & R. F. Leary, 1983. Adaptive significance of differences in the tissue-specific expression of a phosphoglucomutase gene in rainbow trout. Proc. Nat. Acad. Sci. USA 80: 1397–1400.

    CAS  PubMed  Google Scholar 

  • Allendorf, F. W. & R. F. Leary, 1986. Heterozygosity and fitness in natural populations of animals, pp. 57–76 in Conservation Biology: The Science of Scarcity and Diversity, edited by M. Soulé. Sinauer Assoc., Sunderland, MA.

    Google Scholar 

  • Allendorf, F. W., N. J. Mitchell, N. Ryman & G. Stahl, 1977. Isozyme loci in brown trout (Salmo trutta): Detection and interpretation from population data. Hereditas 86: 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Allendorf, F. W. & N. Ryman, 1987. Genetic management of hatchery stocks. pp. 141–159 in Population Genetics and Fisheries Management, edited by N. Ryman & F. M. Utter. Univ. Washington Press, Seattle, WA.

    Google Scholar 

  • Allendorf, F. W., G. Stahl & N. Ryman, 1984. Silencing of duplicate genes: a null allele polymorphism for lactate dehydrogenase in brown trout (Salmo trutta). Mol. Biol. Evolution 1: 238–248.

    CAS  Google Scholar 

  • Allendorf, F. W. & G. H. Thorgaard, 1984. Polyploidy and the evolution of salmonid fishes, pp. 1–53 in Evolutionary Genetics of Fishes, edited by B. J. Turner. Plenum, New York.

    Google Scholar 

  • Allendorf, F. W., F. M. Utter & B. P. May, 1975. Gene duplication in the family Salmonidae: II. Detection and determination of the genetic control of populations, pp. 415–432 in Isozymes IV: Genetics and Evolution, edited by C. L. Markert. Academic Press, New York.

    Google Scholar 

  • Bailey, G. S. & A. C. Wilson, 1968. Homologies between isoenzymes of fish and those of higher vertebrates. J. Biol. Chem. 243: 5843–5853.

    CAS  PubMed  Google Scholar 

  • Boulekbache, H., 1981. Energy metabolism in fish development. Amer. Zool. 21: 377–389.

    CAS  Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1992. Coadaptation, developmental stability, and fitness of insecticide resistance genotypes in the Australian sheep blowfly,Lucilia cuprina: a review. Acta Zoologica Fennica 191: 107–110.

    Google Scholar 

  • Danzmann, R. G., M. M. Ferguson, F. W. Allendorf & K. L. Knudsen, 1986. Heterozygosity and developmental rate in a strain of rainbow trout (Salmo gairdneri). Evolution 40: 86–93.

    Article  Google Scholar 

  • DiMichele, L., D. A. Powers & J. A. DiMichele, 1986. Developmental and physiological consequences of genetic variation at enzyme synthesizing loci inFundulus heteroclitus. Amer. Zool. 26: 201–208.

    Google Scholar 

  • Ferguson, M. M., R. G. Danzmann & F. W. Allendorf, 1985. Developmental divergence among hatchery strains of rainbow trout (Salmo gairdneri). I. Pure strains. Canad. J. Gen. Cytol. 27: 289–297.

    Google Scholar 

  • Ferguson, M. M., K. L. Knudsen, R. G. Danzmann & F. W. Allendorf, 1988. Developmental rate and viability of rainbow trout with a null allele at a lactate dehydrogenase locus. Biochemical Genetics 26: 177–189.

    Article  CAS  PubMed  Google Scholar 

  • Ferris, S. D. & G. S. Whitt, 1979. Evolution of the differential regulation of duplicate genes after polyploidization. J. Mol. Evol. 12: 267–317.

    Article  CAS  PubMed  Google Scholar 

  • Fowler, J. A., 1970. Control of vertebral number in teleosts — an embryological problem. Quart. Rev. Biol. 45: 148–167.

    Article  Google Scholar 

  • Fujio, Y., H. Tsuyuki & N. Sasaki, 1985. Loss of duplicated gene expression in Japanese char,Salvelinus pluvius. Tohoku J. Agricultural Research 36: 35–47.

    Google Scholar 

  • Haldane, J. B. S., 1933. The part played by recurrent mutation in evolution. Amer. Natur. 67: 5–19.

    Article  Google Scholar 

  • Langley, C. H., R. A. Voelker, A. J. Leigh Brown, S. Ohnishi, B. Dickson & E. Montgomery, 1981. Null allele frequencies at allozyme loci in natural populations ofDrosophila melanogaster. Genetics 99: 151–156.

    CAS  PubMed  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1984a. Superior developmental stability of enzyme heterozygotes in salmonid fishes. Amer. Natur. 124: 540–551.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1984b. Major morphological effects of a regulatory gene: Pgml-t in rainbow trout. Mol. Biol. Evol. 1: 183–194.

    CAS  PubMed  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1985a. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1985b. Developmental instability and high meristic counts in interspecific hybrids of salmonid fishes. Evolution 38: 1318–1326.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1992. Genetic, environmental, and developmental causes of meristic variation in rainbow trout. Acta Zoologica Fennica 191: 79–95.

    Google Scholar 

  • Leary, R. F., F. W. Allendorf, K. L. Knudsen & G. H. Thorgaard, 1985c. Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity 54: 219–225.

    PubMed  Google Scholar 

  • Li, W.-H., 1980. Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. Genetics 95: 237–258.

    CAS  PubMed  Google Scholar 

  • Lindsey, C. C., 1954. Temperature-controlled meristic variation in the paradise fishMacropodus opercularis. Canad. J. Zool. 30: 87–98.

    Google Scholar 

  • Lindsey, C. C. & R. W. Harrington, Jr., 1972. Extreme vertebral variation induced by temperature in a homozygous clone of the self-fertilizing fishRivulus marmoratus. Canad. J. Zool. 50: 733–744.

    Article  Google Scholar 

  • MacCrimmon, H. R. & W. Kwain, 1969. Influence of light on early development and meristic characters in rainbow trout,Salmo gairdneri Richardson. Canad. J. Zool. 47: 631–637.

    Google Scholar 

  • Markert, C. L., J. B. Shaklee & G. S. Whitt, 1975. Evolution of a gene. Science 189: 102–114.

    CAS  PubMed  Google Scholar 

  • May, B., M. Stoneking & J. E. Wright, 1980. Joint segregation of biochemical loci in Salmonidae. II. Linkage associations from a hybridizedSalvelinus genome. Genetics 95: 707–726.

    CAS  PubMed  Google Scholar 

  • McKenzie, J. A. & G. M. Clarke, 1988. Diazinon resistance, fluctuating asymmetry, and fitness in the Australian sheep blowfly,Lucilia cuprina. Genetics 120: 213–220.

    CAS  PubMed  Google Scholar 

  • Merkle, S., J. Favor, J. Graw, S. Hornhardt & W. Pretsch, 1992. Hereditary lactate dehydrogenase A-subunit deficiency as cause of early postimplantation death of homozygotes inMus musculus. Genetics 131: 413–421.

    CAS  PubMed  Google Scholar 

  • Mitton, J. B. & M. C. Grant, 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.

    Article  Google Scholar 

  • Ohno, S., 1970. Evolution by gene duplication. Springer, New York.

    Google Scholar 

  • Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. Syst. 17: 391–421.

    Article  Google Scholar 

  • Shaklee, J. B., F. W. Allendorf, D. C. Morizot & G. S. Whitt, 1990. Gene nomenclature for protein-coding loci in fish. Transactions of the American Fisheries Society 119: 2–15.

    Article  CAS  Google Scholar 

  • Shaklee, J. B., J. A. Christiansen, B. D. Sidell, C. L. Prosser & G. S. Whitt, 1977. Molecular aspects of temperature acclimation in fish: contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. Jour. Exper. Zool. 210: 1–20.

    Article  Google Scholar 

  • Soulé, M. E., 1979. Heterozygosity and developmental stability: another look. Evolution 33: 396–401.

    Article  Google Scholar 

  • Stoneking, M., B. May & J. E. Wright, 1981. Loss of duplicate gene expression in salmonids: evidence for a null allele polymorphism at the duplicate aspartate aminotransferase loci in brook trout (Salvelinus fontinalis). Biochem. Genet. 19: 1063–1077.

    Article  CAS  PubMed  Google Scholar 

  • Takahata, N. & T. Maruyama, 1979. Polymorphism and loss of duplicate gene expression: a theoretical study with application to tetraploid fish. Proc. Nat. Acad. Sci. USA 76: 4521–4525.

    CAS  PubMed  Google Scholar 

  • Tanning, V. A., 1950. Influence of the environment on number of vertebrae in teleostean fishes. Nature 165: 28.

    Google Scholar 

  • Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.

    Article  Google Scholar 

  • Voelker, R. A., C. H. Langley, A. J. Leigh Brown, S. Ohnishi, B. Dickson & B. Montgomery, 1980. Enzyme null alleles in natural populations ofDrosophila melanogaster: frequencies in a North Carolina population. Proc. Nat. Acad. Sci. USA 77: 1091–1095.

    CAS  PubMed  Google Scholar 

  • Wright, J. E., J. R. Heckman & L. A. Atherton, 1975. Genetic and developmental analyses of LDH isozymes in trout, pp. 375–401 in Isozymes III: Developmental Biology, edited by C. L. Markert. Academic Press, New York.

    Google Scholar 

  • Zouros, E. & D. W. Foltz, 1987. The use of allelic isozyme variation for the study of heterosis. Isozymes: Current Topics in Biological and Medical Research 13: 1–59.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leary, R.F., Allendorf, F.W. & Knudsen, K.L. Null alleles at two lactate dehydrogenase loci in rainbow trout are associated with decreased developmental stability. Genetica 89, 3–13 (1993). https://doi.org/10.1007/BF02424501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424501

Key words

Navigation