Skip to main content
Log in

Larva-to-adult and pupa-to-adult mortality dynamics in crowded cultures ofDrosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Pupal mortality is shown here to bear the main responsibility for total mortality duringDrosophila melanogaster development in crowded conditions. The dynamics of the pupa-to-adult and larva-to-adult processes of mortality follows a S-shaped logistic model, like survival in density-dependent processes. Data given here confirm to some extent Wallace's suggestion that pupal mortality is a density-dependent process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner, M. & Thompson, J. N., 1978. The laboratory culture of Drosophila. In: M. Ashburner, and T. R. F. Wright (Eds), The genetics and biology of Drosophila. Vol. 2a. Academic Press. New York.

    Google Scholar 

  • Bakker, K., 1959. Feeding period, growth and pupation in larvae of Drosophila melanogaster. Ent. exp. appl. 2: 171–186.

    Article  Google Scholar 

  • Bakker, K., 1961. An analysis of factors which determine success in competition for food among larvae of Drosophila melanogaster. Arch. néerland. Zool. 14: 200–282.

    Article  Google Scholar 

  • Bakker, K. & Nelissen, F., 1963. On the relations between the duration of the larval and pupal period, weight and diurnal rythm in emergence in D. melanogaster. Ent. exp. appl. 6: 37–52.

    Article  Google Scholar 

  • Barker, J. S. F. & Podger, R. N., 1970. Interspecific competition between Drosophila melanogaster and Drosophila simulans: effects of larval density on viability, developmental period and adult body size. Ecology 51: 170–189.

    Article  Google Scholar 

  • Batschelet, E., 1971. Introduction to mathematics for life scientists. Springer, Berlin-Heidelberg-New York.

    Book  Google Scholar 

  • Boggild, O. & Keiding, J., 1958. Competition in house fly larvae, experiments involving a DDT-resistance and a susceptible strain. Oikos 9: 1–25.

    Article  Google Scholar 

  • Bonnier, G. 1926. Temperature and time of development of the two sexes in Drosophila. J. exp. Biol. 4: 186–195.

    Google Scholar 

  • Botella, L. M., Moya, A. & Ménsua, J. L., 1983. Effects of urea on viability and mean developmental time in D. melanogaster larvae. Dros. Inf. Serv. 59: 23–24.

    Google Scholar 

  • Botella, L. M., Moya, A., González, C. & Ménsua, J. L., 1985. Larval stop, delayed development and survival in over-crowded cultures of D. melanogaster. J. Insect Physiol. 31: 179–185.

    Article  CAS  Google Scholar 

  • Church, R. B. & Robertson, F. W., 1966. Biochemical analysis of genetic differences in the growth of Drosophila. Genet. Res. Camb. 7: 383–407.

    Article  CAS  Google Scholar 

  • De Jong, G., 1976. A model of competition for food. I. Frequency dependent viability. Am. Natur. 110: 1013–1027.

    Article  Google Scholar 

  • Gill, D. E., 1978. On selection at high population density. Ecology 59: 1289–1291.

    Article  Google Scholar 

  • Ménsua, J. L. & Moya, A., 1983. Stopped development in crowded cultures of D. melanogaster. Heredity 51: 347–352.

    Article  PubMed  Google Scholar 

  • Moya, A. & Ménsua, J. L., 1983. Dynamics of larval competition process: the overfeeding technique in Drosophila. Dros. Inf. Serv. 59: 90–91.

    Google Scholar 

  • Nunney, L., 1983. Sex differences in larval competition in Drosophila melanogaster: the testing of a competition model and its relevance to frequency-dependence selection. Am. Natur. 121: 67–93.

    Article  Google Scholar 

  • Park, T., 1938. Studies in population physiology. VIII. The effect of larval population density on the postembryonic development of the flour beetles Tribolium confusum Duval. J. exp. Zool. 79: 51–70.

    Article  CAS  Google Scholar 

  • Prout, T., 1980. Some relationships between density-independent selection and density-dependent population growth. In: M. K. Hecht, W. C. Steere, and B. Wallace, (Eds). Evolutionary Biology. 13. Plenum Press, New York, London.

    Google Scholar 

  • Roughgarden, J., 1979. Theory of population genetics and evolutionary ecology: an introduction. Mcmillan, New York.

    Google Scholar 

  • Sang, J. H., 1949. The ecological determinants of population growth in Drosophila cultures. III. Larval and pupal survival. Physiol. Zool. 22: 183–202.

    Article  CAS  PubMed  Google Scholar 

  • Siler, W., 1979. A competing-risk model for animal mortality. Ecology 60: 750–757.

    Article  Google Scholar 

  • Wallace, B., 1981. Basic population genetics. Columbia University Press, New York.

    Google Scholar 

  • Wilbur, H. M. & Collins, J. P., 1971. Ecological aspects of amphibian metamorphosis. Science 182: 1305–1314.

    Article  Google Scholar 

  • Wollkind, D. J. & Logan, J. A., 1978. Temperature-dependent predatorprey mite ecosystem on apple tree foliage. J. math. Biol. 6: 265–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moya, A., Botella, L.M. Larva-to-adult and pupa-to-adult mortality dynamics in crowded cultures ofDrosophila melanogaster . Genetica 67, 201–207 (1985). https://doi.org/10.1007/BF02424491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424491

Keywords

Navigation