Genetica

, Volume 68, Issue 2, pp 97–103 | Cite as

Genetic divergence between populations of two closely related troglobitic beetle species (Speonomus: Bathysciinae, Coleoptera)

  • B. Crouau-Roy
Article

Abstract

Genetic variability and divergence at 13 enzyme loci were studied in two species of troglobitic beetles (Speonomus zophosinus andhydrophilus 12 populations) collected from the Pyrenees mountains. These allopatric species exhibit a high degree of specialization to underground life and a very small geographical range.

Four diagnostic loci arePgi, Est-2, Pac-1, Phi. Within each species polymorphic loci exhibited marked spatial variation of allele frequencies, sometimes over short distances (5–10 km). The levels of genetic variability are comparable to those observed in non-cave invertebrates (frequency of polymorphic loci: 0.31; average expected heterozygosity: 0.112±0.015). Moreover, a single species showed variability in the average level of heterozygosity (0.06 to 0.172). Patterns of genetic differentiation among species were also studied; mean genetic distance (D: 0.263±0.010) between the twoSpeonomus species was of the same order of magnitude as most data reported in the literature between species.

A significant heterozygote deficiency occurs in local populations and for all loci. This deficit does not vary from locus to locus. Several hypotheses were examined in an attempt to account for these observations in connection with the species biology. This deficit probably is due to the breeding structure of the population (inbreeding and assortative mating) coupled with limited dispersal ability.

Keywords

Polymorphic Locus Dispersal Ability Assortative Mating Pyrenees Beetle Species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avise, J. C. & Selander, R. K., 1972. Evolutionary genetics of cave dwelling fishes of the genus Astyanax. Evolution 26: 1–19.CrossRefGoogle Scholar
  2. Ayala, F. J., 1975. Genetic differentiation during the speciation process. Evol. Biol. 8: 1–75.Google Scholar
  3. Barr, T. C., 1968. Cave ecology and the evolution of troglobites. Ecol. Biol. 2: 35–102.Google Scholar
  4. Brewer, G. J., 1970. An introduction to isozyme techniques. Academic Press, New York 186 p.Google Scholar
  5. Chakraborty, R. & Nei, M., 1977. Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31: 347–356.CrossRefGoogle Scholar
  6. Cockley, D. E., Gooch, J. L. & Weston, D. P., 1977 Genetic diversity in cave dwelling crickets (Ceutophilus gracilipes). Evolution 31: 313–318.CrossRefGoogle Scholar
  7. Crouau-Roy, B., 1983. Variability génétique entre les populations de Speonomus zophosinus (Coleoptera). Biochem. Syst. Ecol. 1: 55–61.CrossRefGoogle Scholar
  8. Deleurance-Glacon, S., 1963. Recherches sur les coleéptères troglobites de la sous famille des Bathysciinae. Ann. Sc. nat. Zool. 5: 1–172.Google Scholar
  9. Delay, B., Sbordoni, V., Cobolli-Sbordoni, M. & De Matthaeis, E., 1980. Divergences génétiques entre les populations de Speonomus delarouzeei du massif du Canigou. Mem. Biospéol. 7: 235–247.Google Scholar
  10. Durand, J. et Juberthie-Jupeau, L., 1980. Etude cytogénétique de deux espèces de Speonomus (Coléoptères, Bathysciinae). Mem. Biospéol. 7: 267–271.Google Scholar
  11. Giuseffi, S., Kane, T. C. & Duggleby, W. F., 1978. Genetic variability in the Kentucky cave bettle Neaphaenops telkampfii (Coleoptera: Carabidae). Evolution 32: 679–681.CrossRefGoogle Scholar
  12. Juberthie, C., Delay, B. & Bouillon, M., 1980. Sur ('existence d'un milieu souterrain superficiel en zone non calcaire. C. r. Acad. Sci. 290: 49–52.Google Scholar
  13. Juberthie, C., Delay, B., Durand, J., Juberthie-Jupeau, L., Bouillon, M. & Ruffat, G., 1981. Etude écologique, morphologique, biométrique et biologique de Speonomus zophosinus (Coléoptères Bathysciinae). Mém. Biospéol. VIII: 95–124.Google Scholar
  14. Laing, C. D., Carmody, G. R. & Peck, S. B., 1976. Population genetics and evolutionary biology of the cave beetle Ptomaphagus hirtus. Evolution 30: 484–497.CrossRefGoogle Scholar
  15. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.CrossRefGoogle Scholar
  16. Poulson, T. L. & White, W. B., 1969. The cave environment. Science 165: 971–980.Google Scholar
  17. Powell, J. R., 1975. Protein variation in natural populations of animals. Ecol. Biol. 8: 79–113.Google Scholar
  18. Sbordoni, V., Allegrucci, G., Caccone, A., Cesaroni, D., Cobolli-Sbordoni, M. & De Matthaeis, E., 1981. Genetic variability and divergence in cave populations of Troglophilus cavicola and T. andreinii (Orthoptera: Rhaphidophoridae). Evolution 35: 226–233.CrossRefGoogle Scholar
  19. Selander, R. K., 1976. Genic variation in natural populations 21–45. In: F. J. Ayala, Molecular evolution. Sinauer, Sunderland, Mass.Google Scholar
  20. Singh, S. M. & Zouros, E., 1978. Genetic variation associated with growth rate in the American Oyster (Crassostrea virginica). Evolution 32: 342–353.CrossRefGoogle Scholar
  21. Sneath, P. H. & Sokal, R. R., 1973. Numerical taxonomy. W. H. Freeman and Co., San Francisco.Google Scholar
  22. Turanchick, E. J. & Kane, T. C., 1979. Ecological genetics of the cave beetle Neaphaenops telkampfii. Oecologia 44: 63–67.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • B. Crouau-Roy
    • 1
  1. 1.Laboratoire souterrain du CNRSSaint-GironsFrance

Personalised recommendations