Climatic Change

, Volume 4, Issue 4, pp 353–374 | Cite as

Glacial cycles and ice-sheet modelling

  • J. Oerlemans


An attempt is made to simulate the Pleistocene glacial cycles with a numerical model of the Northern Hemisphere ice sheets. This model treats the vertically-integrated ice flow along a meridian, including computation of bedrock adjustment and temperature distribution in the ice. Basal melt water is traced and controls ice-mass discharge.

The model produces asymmetric glacial cycles, even when it is not forced. Model parameters can be chosen such that cycles with a duration of about 100 000 yr occur. Due to the production of basal melt water and bedrock sinking, deglaciations are very rapid.

The occurrence of glacial cycles in the model is a stable feature, but thephase of the cycles is very sensitive to the model parameters. The main conclusion is that ice-sheet dynamics may provide an explanation for the Pleistocene glacial cycles. However, the ‘predictability’ of the ice-volume record appears to be small.


Numerical Model Temperature Distribution Northern Hemisphere Pleistocene Stable Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambach, W.: 1972, ‘Zur Schätzung der Eis-Nettoablation im Randgebiet des Grönlandischen Inlandeises’,Polarforschung 42, 18–23.Google Scholar
  2. Andrews, J. T. and Manhaffy, M. A. W.: 1976, ‘Growth Rate of the Laurentide Ice Sheet and Sea-Level Lowering (With Emphasis on the 115 000 BP Sea Level Low)’,Quaternary Res. 6, 167–183.CrossRefGoogle Scholar
  3. Berger, A. L.: 1978, ‘Long-Term Variations of Daily Insolation and Quaternary Climatic Changes’,J. Atmos. Sci. 35, 2362–2367.CrossRefGoogle Scholar
  4. Birchfield, G. E.: 1977, ‘A Study of the Stability of a Model Continental Ice Sheet Subject to Periodic Variations in Heat Input’,J. Geophys. Res. 82, 4909–4913.Google Scholar
  5. Birchfield, G. E. and Weertman, J.: 1978, ‘A Note on the Spectral Response of a Model Continental Ice Sheet’,J. Geophys. Res. 83, 4123–4125.Google Scholar
  6. Birchfield, G. E., Weertman, J., and Lunde, A. T.: 1981, ‘A Paleoclimatic Model of the Northern Hemisphere Ice Sheets’,Quaternary Res. (in press).Google Scholar
  7. Bodvarsson, G.: 1955, ‘On the Flow of Ice Sheets and Glaciers’,Jökull 5, 1–8.Google Scholar
  8. Budd, W. F.: 1981, ‘The Importance of Ice Sheets in Long Term Changes of Sea Level and Climate’,IAHS Pub. No. 131, 441–471.Google Scholar
  9. Budd, W. F. and Smith, I. N.: 1981, ‘The Growth and Retreat of Ice Sheets in Response to Orbital Radiation Changes’,IAHS Pub. No. 131, 369–409.Google Scholar
  10. Budd, J. F. and McInnes, B.: 1975, ‘Modelling of Periodically Surging Glaciers’,Science 186, 925–927.Google Scholar
  11. Budyko, M. I.: 1969, ‘The Effect of Solar Radiation Variations on the Climate of the Earth’,Tellus 21, 611–619.Google Scholar
  12. Coakley, J. A. and Wielicki, B.: 1979, ‘Testing Energy Balance Climate Models’,J. Atmos Sci. 36, 2031–2039.CrossRefGoogle Scholar
  13. Dool, H. M. van den: 1980, ‘On the Role of Cloud Amount on an Energy-Balance Model of the Earth's Climate’,J. Atmos. Sci. 37, 939–946.CrossRefGoogle Scholar
  14. Gal-Chen, T. and Schneider, S. H.: 1976, ‘Energy Balance Climate Modeling: Comparison of Radiative and Dynamic Feedback Mechanisms’,Tellus 28, 108–121.Google Scholar
  15. Ghil, M. and Le Treut, H.; 1981, ‘A Climate Model with Cryodynamics and Geodynamics’,J. Geophys. Res. 86, 5262–5270.Google Scholar
  16. Hartmann, D. L. and Short, D. A.: 1979, ‘On the Role of Zonal Asymmetries in Climatic Change’,J. Atmos. Sci. 36, 519–528.CrossRefGoogle Scholar
  17. Hays, J. D., Imbrie, J., and Shackleton, N. G.: 1976, ‘Variations in the Earth's Orbit: Pacemaker of the Ice Ages’,Science 194, 1121–1132.Google Scholar
  18. Howard, L. N.: 1979, ‘Nonlinear Oscillations’, in Hoppensteadt (ed.),Nonlinear Oscillations in Biology, Lectures in Applied Mathematics, Vol. 17, American Mathematical Society, 253 pp.Google Scholar
  19. Imbrie, J., Donk, J. van, and Kipp, N. G.: 1973, ‘Paleoclimatic Investigation of a Late Pleistocene Carribean Deep-Sea Core: Comparison of Isotopic and Faunal Methods’,Quaternary Res. 3, 10–38.CrossRefGoogle Scholar
  20. Jenssen, D.: 1977, ‘A Three-Dimensional Ice Sheet Model’,J. Glaciology 18, 373–390.Google Scholar
  21. Källen, E., Crafoord, C., and Ghil, M.: 1979, ‘Free Oscillations in a Climate Model with Ice-Sheet Dynamics’,J. Atmos. Sci. 36, 2292–2303.CrossRefGoogle Scholar
  22. Lliboutry, L.: 1966, ‘Bottom Temperatures and Basal Low-Velocity Layer in an Ice Sheet’,J. Geophys. Res. 71, 2535–2543.Google Scholar
  23. Lindzen, R. S. and Farrell, B.: 1977, ‘Some Realistic Modifications of Simple Climate Models’,J. Atmos. Sci. 34, 1487–1501.CrossRefGoogle Scholar
  24. Mesinger, F. and Arakawa, A.: 1976, ‘Numerical Methods Used in Atmospheric Models’, Vol. 1.GARP Publication Ser. No. 17, 64 pp.Google Scholar
  25. Nicolis, C. and Nicolis, G.: 1981, ‘Stochastic Aspects of Climatic Transitions - Additive Fluctuations’,Tellus 33, 225–234.Google Scholar
  26. North, G. R. and Coakley, J. A.: 1979, ‘Differences Between Seasonal and Mean Annual Energy Balance Model Calculations of Climate and Climate Sensitivity’,J. Atmos. Sci. 36, 1189–1204.CrossRefGoogle Scholar
  27. Oerlemans, J.: 1980a, ‘Model Experiments on the 100 000-yr Glacial Cycle’,Nature 287, 430–432.CrossRefGoogle Scholar
  28. Oerlemans, J.: 1980b, ‘On Zonal Asymmetry and Climate Sensitivity’,Tellus 32, 489–499.Google Scholar
  29. Oerlemans, J.: 1980c, ‘Continental Ice Sheets and the Planetary Radiation Budget’,Quaternary Res. 14, 349–359.Google Scholar
  30. Oerlemans, J.: 1981, ‘Some Basic Experiments with a Vertically-Integrated Ice Sheet Model’,Tellus 33, 1–11.Google Scholar
  31. Oerlemans, J.: 1982, ‘Response of the Antarctic Ice Sheet to a Climatic Warming: A Model Study’,J. Climatology 2, 1–11.Google Scholar
  32. Oerlemans, J. and Vernekar, A. D.: 1981, ‘A Model Study of the Relation Between Northern Hemisphere Glaciation and Precipitation Rates’,Contr. Atm. Phys. 54, 352–361.Google Scholar
  33. Paterson, W. S. B.: 1969,The Physics of Glaciers, Pergamon Press, 250 pp.Google Scholar
  34. Paterson, W. S. B.: 1981, ‘Ice Sheets and Ice Shelves’, in Colbeck (ed.),Dynamics of Snow and Ice Masses, Academic Press, 468 pp.Google Scholar
  35. Pollard, D.: 1978, ‘An Investigation of the Astronomical Theory of the Ice Age Using a Simple Climate-Ice Sheet Model’,Nature 272, 233–235.CrossRefGoogle Scholar
  36. Pollard, D., Ingersoll, A. P., and Lockwood, J. G.: 1980, ‘Response of a Zonal Climate-Ice Sheet Model to the Orbital Perturbations During the Quaternary Ice Ages’,Tellus 32, 301–319.CrossRefGoogle Scholar
  37. Pollard, D.: 1982, ‘A Simple Ice-Sheet Model Yields Realistic 100 k yr Glacial Cycles’,Nature 272, 233–235.CrossRefGoogle Scholar
  38. Putnins, P.: 1970, ‘The Climate of Greenland’, in Orvig (ed.),World Survey of Climatology, Elsevier, Vol. 14, 128 pp.Google Scholar
  39. Saltzman, B., Sutera, A., and Evenson, A.: 1981, ‘Structural Stochastic Stability of a Simple Auto-Oscillatory Climatic Feedback System’,J. Atmos. Sci. 38, 494–503.CrossRefGoogle Scholar
  40. Shackleton, N. G. and Opdyke, N. D.: 1973, ‘Oxygen Isotope and Paleomagnetic Stratigraphy of Equatorial Pacific Core V28–238: Oxygen Isotope Temperatures and Ice Volumes on a 105 and 106 yr Scale’,Quaternary Res. 3, 39–55.CrossRefGoogle Scholar
  41. Shackleton, N. G. and Opdyke, N. D.: 1976, ‘Oxygen Isotope and Paleomagnetic Stratigraphy of Pacific Core v28–239, Late Pliocene to Latest Pleistocene’,Geol. Soc. Am. Mem. 145, 449–464.Google Scholar
  42. Schneider, S. H.: 1972, ‘Cloudiness as a Global Feedback Mechanism: The Effects on the Radiation Balance and Surface Temperature of Variations in Cloudiness’,J. Atmos. Sci. 29, 1413–1422.CrossRefGoogle Scholar
  43. Sellers, W. D.: 1969, ‘A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System’,J. Applied. Meteor. 8, 392–400.CrossRefGoogle Scholar
  44. Sergin, V. Y.: 1979, ‘Numerical Modelling of the Glaciers-Ocean-Atmosphere Global System’,J. Geophys. Res. 84, 3191–3204.Google Scholar
  45. Sutera, A.: 1981, ‘On Stochastic Perturbation and Long-Term Climate Behaviour’,Quart. J. Roy. Met. Soc. 107, 137–152.CrossRefGoogle Scholar
  46. Turcotte, D. L.: 1979, ‘Flexure’,Advances in Geophysics 21, 51–86.Google Scholar
  47. Warren, S. G. and Schneider, S. H.: 1979, ‘Seasonal Simulation as a Test for Uncertainties in Parameterizations of a Budyko-Sellers Zonal Climate Model’,J. Atmos. Sci. 36, 1377–1391.CrossRefGoogle Scholar
  48. Weertman, J.: 1961, ‘Stability of Ice-Age Ice Sheets’,J. Geophys. Res. 66, 3783–3792.CrossRefGoogle Scholar
  49. Weertman, J.: 1966, ‘Effect of a Basal Water Layer on the Dimensions of Ice Sheets’,J. Glaciol. 6, 191–207.Google Scholar
  50. Weertman, J.: 1976, ‘Milankovitch Solar Radiation Variations and Ice Age Ice Sheet Sizes’,Nature 261, 17–20.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Co 1982

Authors and Affiliations

  • J. Oerlemans
    • 1
  1. 1.Institute for Meteorology and Oceanography, University of UtrechtUtrechtThe Netherlands

Personalised recommendations