Physik der kondensierten Materie

, Volume 16, Issue 2, pp 163–179 | Cite as

On the effect of phonon decay on electronic transitions in ionic crystal semiconductors

  • Elmar Trautenberg


Generally electronic processes in semiconductors are accompanied by phonon excitations. These excitations themselves influence electronic transitions. On the other hand excited phonons decay by interaction with other impurities in the crystal, which act as a heat-bath. The resulting competition between phonon exciting electronic processes and phonon decay is described by Pauli's master equation. By expansion of its solutions into phonon decay solutions the problem can be separated into different decay equations for phonons and electrons as proposed by Stumpf. Assuming linear phonon-heat-bath coupling the phonon decay equation can be solved exactly by a generating function technique. The appropriate phonon decay frequencies are calculated for a simple heat-bath model.


Spectroscopy Neural Network State Physics Generate Function Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stumpf, H.: Quantentheorie der Ionenrealkristalle. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  2. 2.
    Stumpf, H.: Z. Physik229, 488 (1969).CrossRefGoogle Scholar
  3. 3.
    Stumpf, H.: Phys. kondens. Materie13, 9 (1971).CrossRefGoogle Scholar
  4. 4.
    Stumpf, H.: Phys. kondens. Materie13, 101 (1971).CrossRefGoogle Scholar
  5. 5.
    Stumpf H.: Vorlesungen zur Thermodynamik. Tübingen: Skripten 1972.Google Scholar
  6. 6.
    Stump H., Rieckers, A.: Thermodynamik. Braunschweig: Vieweg 1974 (in preparation)Google Scholar
  7. 7.
    Trautenberg, E.: Dissertation Universität Tübingen, to be published.Google Scholar
  8. 8.
    Klein, R., Wehner, R.: Phys. kondens. Materie10, 1 (1969).Google Scholar
  9. 9.
    Beck, H.: Phys. kondens. Materie12, 330 (1971).Google Scholar
  10. 10.
    Niklasson, G.: Phys. kondens. Materie14, 138 (1972).CrossRefGoogle Scholar
  11. 11.
    Thellung, A., Weiss, K.: Phys. kondens. Materie9, 300 (1969).Google Scholar
  12. 12.
    Mann, E.: Phys. kondens. Materie12, 210 (1971).CrossRefGoogle Scholar
  13. 13.
    Punkkinen, M.: Phys. kondens. Materie13, 79 (1971).CrossRefGoogle Scholar
  14. 14.
    Krey, U.: Phys. kondens. Materie11, 326 (1970).Google Scholar
  15. 15.
    Krey, U.: Phys. kondens. Materie11, 340 (1970).Google Scholar
  16. 16.
    Bennett, H., Stoneham, A. M.: Phys. Rev. B6, 3086 (1972).CrossRefADSGoogle Scholar
  17. 17.
    Hanke, W., Bross, H.: Phys. kondens. Materie13, 203 (1971).CrossRefGoogle Scholar
  18. 18.
    Schneider, T., Stoll, E.: Phys. kondens. Materie9, 32 (1969).Google Scholar
  19. 19.
    Pirc, R., Gosar, P.: Phys. kondens. Materie9, 377 (1969).Google Scholar
  20. 20.
    Pirc, R., Gosar, P.: Phys. kondens. Materie11, 163 (1970).Google Scholar
  21. 21.
    Fröhlich, C.: Phys. kondens. Materie10, 265 (1969).Google Scholar
  22. 22.
    Mišek, K.: Crystal Lattice Defects1, 223 (1970).Google Scholar
  23. 23.
    de Goer, A. M., Devismes, N.: J. Phys. Chem. Solids33, 1785 (1972).Google Scholar
  24. 24.
    Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford: Clarendon Press 1954.Google Scholar
  25. 25.
    Leibfried, G.: Gittertheorie der mechanischen und thermischen Eigenschaften. In: Handbuch der Physik, Band VII, Teil 1. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  26. 26.
    Heinzel, W.: Dissertation Universität Tübingen (in perparation).Google Scholar
  27. 27.
    Kamke, E.: Differentialgleichungen, Lösungsmethoden und Lösungen II. Leipzig: Geest u. Portig 1950.Google Scholar
  28. 28.
    Sneddon, I. N.: Spezielle Funktionen der mathematischen Physik. Mannheim: Bibliographisches Institut 1963.Google Scholar
  29. 29.
    Märtl, H.: Diplomarbeit Universität München 1967.Google Scholar
  30. 30.
    Wagner, M.: Z. Naturforsch.16a, 302 (1961).Google Scholar
  31. 31.
    Tosi, M. P.: Solid State Physics16, 1 (1964).Google Scholar
  32. 32.
    Bopp, F.: Thermostatistik. München: Skripten 1965.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Elmar Trautenberg
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenGermany

Personalised recommendations