Skip to main content
Log in

Continuum mechanics of nematic liquids

  • Published:
Physik der kondensierten Materie

Abstract

We develop a simple formulation of the linearized continuum mechanics of nematic liquids. This work is partly a review and partly a presentation of original work, but throughout our main purpose has been to reduce the complexity of the formulation to a minimum and to stay as close to standard continuum mechanics as possible. Two special cases are treated in detail: The orientation pattern in a nematic liquid flowing between parallel plates, and the drag on a cylinder of nematic liquid rotating in a magnetic field. In the former case we also consider how one might measure this pattern optically, and thereby gain information about the aligning forces between the wall and the liquid. In the latter case we calculate numerical results for p-azoxyanisole and compare with the experiments of Zwetkoff; there are some discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gray, G. W.: Molecular Structure and the Properties of Liquid Crystals. New York: Academic Press 1962.

    Google Scholar 

  2. Brown, G. H., Shaw, W. G.: Chem. Rev.57, 1049 (1957).

    Article  Google Scholar 

  3. Chistyakov, I. G.: Usp. Fiz. Nauk89, 563 (1966); translated in Soviet Physics Uspekhi9, 551 (1967).

    Google Scholar 

  4. Saupe, A.: Angewandte Chemie (Int. Ed.)7, 97 (1968).

    Article  Google Scholar 

  5. That this may not always be true, has recently been proposed by Meyer, R. B.: Phys. Rev. Letters22, 918 (1969).

    Article  ADS  Google Scholar 

  6. Smectic liquids can be biaxial, see Taylor, T. R., Fergason, J. L., Arora, S. L.: Phys. Rev. Letters24, 359 (1970).

    Article  ADS  Google Scholar 

  7. Frank, F. C.: Ciscuss. Faraday Soc.25, 19 (1958).

    Article  Google Scholar 

  8. Ericksen, J. L.: Trans. Soc. Rheol.5, 23 (1961).

    Article  MathSciNet  Google Scholar 

  9. ——: Arch. Ratl. Mech. Anual.9, 371 (1962).

    MATH  MathSciNet  Google Scholar 

  10. ——: Arch. Ratl. Mech. Anual.10, 189 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  11. ——: Phys. Fluids9, 1205 (1966).

    Article  ADS  Google Scholar 

  12. ——: Trans. Soc. Rheol.2, 5 (1967).

    Article  Google Scholar 

  13. ——: J. Fluid Mech.27, 59 (1967).

    Article  ADS  Google Scholar 

  14. Nehring, J., Saupe, A.: J. chem. Phys.54, 337 (1971).

    Article  Google Scholar 

  15. Green, A. E., Rivlin, R. S.: Arch. Ration. Mech. Anal.17, 113 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  16. ——: Z. angew. Math. Phys.15, 290 (1963).

    Article  MathSciNet  Google Scholar 

  17. ——, Naghdi, P. M., Rivlin, R. S.: Int. J. Engng. Sci.2, 611 (1965).

    Article  MATH  Google Scholar 

  18. Ericksen, J. L.: Kolloidzeitschrift173, 117 (1960).

    Article  Google Scholar 

  19. ——: Arch. Ratl. Mech. Anal.4, 231 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  20. ——: Trans. Soc. Rheol.4, 29 (1960).

    Article  MathSciNet  Google Scholar 

  21. ——: Arch. Ratl. Mech. Anal.8, 1 (1961).

    MathSciNet  Google Scholar 

  22. Leslie, F. M.: J. Fluid Mech.18, 595 (1964).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. ——: Proc. Camb. Phil. Soc.60, 949 (1964).

    Article  MathSciNet  Google Scholar 

  24. ——: Quart. J. Mech. applied Math.19, 357 (1966).

    MATH  MathSciNet  Google Scholar 

  25. Leslie F. M.: Arch. Ratl. Mech. Anal.28, 265 (1968).

    MATH  MathSciNet  Google Scholar 

  26. ——: Rheol. Acta10, 91 (1971).

    Article  Google Scholar 

  27. Helfrich, W.: J. chem. Phys.50, 100 (1969).

    Article  ADS  Google Scholar 

  28. Parodi, O.: J. Phys. (Paris)31, 581 (1970).

    Google Scholar 

  29. Helfrich, W.: J. chem. Phys.51, 4092 (1969).

    Article  ADS  Google Scholar 

  30. Groupe d'Etude des Cristaux Liquides (Orsay): J. chem. Phys.51, 816 (1969).

    Article  Google Scholar 

  31. For a treatment of a somewhat related problem, a rotating nematic liquid in an electric field, see Aslaksen, E. W. to appear in Molecular Crystals and Liquid Crystals.

  32. Zwetkoff, V. N.: Acta Physiocochimica URSS10, 556 (1939).

    Google Scholar 

  33. Marinin, B. A., Zwetkoff, V. N.: Acta Physiocochimica URSS11, 837 (1939);13, 219 (1940). These experiments are discussed in Helfrich, W.: J. Chem. Phys.50, 100 (1969).

    Google Scholar 

  34. Orsay Liquid Crystal Group, Molecular Crystals and Liquid Crystals12, 187 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslaksen, E.W. Continuum mechanics of nematic liquids. Phys kondens Materie 14, 80–100 (1971). https://doi.org/10.1007/BF02422394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02422394

Keywords

Navigation