Physik der kondensierten Materie

, Volume 12, Issue 2, pp 104–130 | Cite as

Spin-lattice relaxation of the O2 molecule-ion in the potassium halides

  • T. G. CastnerJr.


An experimental and theoretical study of the spin-lattice relaxation (SLR) of the O2 molecule-ion in the potassium halides has been made. The SLR rate was measured by several methods between 1.32°K and 36°K with a 3 cm. ESR spectrometer. The results indicate a one phonon process with a large anisotropy dominates forT<2°K.T1 is much longer for the magnetic field parallel to the molecular axis. Detailed theoretical calculations indicate a new SLR process, namely phonon-induced libration of the molecular axis, can probably explain the field parallel case. The Van Vleck SLR process can account for the field-perpendicular case.


Anisotropy Theoretical Calculation Halide Relaxation Spin Molecular Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Spin-Gitter Relaxation (SGR) des O2-Molekül-Ions in den Kalium Halogeniden wurde experimentell und theoretisch untersucht. Die SGR Rate wurde mit verschiedenen Methoden zwischen 1,32°K und 36°K mit Hilfe eines 3 cm-ESR Spektrometers gemessen. Die Resultate zeigen, daß ein Einphononenprozeß mit einer großen Anisotropie fürT<2°K vorherrscht.T1 ist am größten für das Magnetfeld parallel zur Molekülachse. Detaillierte Rechnungen zeigen, daß ein neuer SGR Prozeß, nämlich Phononen induzierte Libration der Molekülachse, wahrscheinlich den Fall des parallelen Feldes erklären kann. Der Van Vleck SGR Prozeß kann den Fall des senkrechten Feldes erklären.


Une étude expérimentale et théorique a été faite sur la relaxation spin réseau (RSR) de la molécule O2 dans les halogénures de potassium. On a mesuré le taux de relaxation par plusieurs methodes entre 1.32°K et 36°K avec un 3 cm-ESR spectromètre. Les résultats indiquent qu'un processus à un phonon avec une large anisotropie domine pourT<2°K.T1 est beaucoup plus long pour le champs magnétique parallel à l'axe moléculaire. Des calculs détaillés indiquent qu'un noveau type de RSR processus où la libration de l'axe moléculaire est causé par les phonons peut probablement expliquer le cas du champs parallel. Un processus du type Van Vleck décrit le cas du champs perpendiculaire.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a selection of important contributions see “Spin-Lattice Relaxation in Ionic Solids”. Eds.: A. A. and R. Orbach. New York: Harpers and Row 1969.Google Scholar
  2. 2.
    Van Vleck, J. H.: Phys. Rev.51, 426 (1940).CrossRefADSGoogle Scholar
  3. 3.
    Orbach, R.: Proc. Roy. Soc. (London)A 264, 485 (1961).ADSGoogle Scholar
  4. 4.
    The simplest and most important paramagnetic molecular ions observed have been the diatomic typeX 2 whereX can be a halogen atom,O, N, orS atom. WhenX is the halogen host atom in alkali halide crystal the center is either an intrinsic VK-center or H-center (the H-center is an interstitial halogen atom, but withX 2 occupying a substitutional halogen position and it usually possesses the same symmetry as the substitutionalO 2 ,N 2 , orS 2 impurity ions). Paramagnetic ions of types XY, (XY), (X2Y) and X2 have also been observed. For references the reader is referred to the review article by H. Seidel and H. C. Wolf in Physics of Color Centers. Ed.: W. Beall Fowler. New York: Academic Press 1968.Google Scholar
  5. 5.
    Känzig, W., Cohen, M. C.: Phys. Rev. Letters3, 509 (1959).CrossRefADSGoogle Scholar
  6. 6.
    Zeller, H. R., Känzig, W.: Helv. phys. Acta40, 845 (1967). — Shuey, R. T., Zeller, H. R.: Helv. phys. Acta40, 873 (1967).Google Scholar
  7. 7.
    Rolfe, J.: J. chem. Phys.40, 1664 (1964).CrossRefGoogle Scholar
  8. 8.
    Känzig, W.: J. Phys. Chem. Solids23, 479 (1962).CrossRefGoogle Scholar
  9. 9.
    ——: J. Phys. Chem. Solids23, 479 (1962); see also Silsbee, R. H.: J. Phys. Chem. Solids28, 2525 (1967); Pfister, G., Känzig, W.: Phys. kondens. Materie10, 231 (1969); Pfister, G., Bösch, M.: J. Phys. Chem. Solids (in press).CrossRefGoogle Scholar
  10. 10.
    Pire, R., Zeks, B., Gosar, P.: J. Phys. Chem. Solids27, 1219 (1966).CrossRefGoogle Scholar
  11. 11.
    Gosar, P., Pirc, R.: Proceedings of International Conference on Magnetic Resonance and Relaxation, XIV Colloque Ampère, Ljubljana 1966.Google Scholar
  12. 12.
    See Pfister, G., Känzig, W.: J. Phys. Chem. Solids23, 479 (1962).CrossRefGoogle Scholar
  13. 13.
    Rebane, K., Rebane, L., Sild, O.: Localized Excitations in Solids. New York: Plenum Press 1968, p. 117.Google Scholar
  14. 14.
    Breen, D. P., Krupka, D. C., Williams, F. I. B.: Phys. Rev.179, 241 (1969), see also Lee, K. P., Walsh, D.: Phys. Letters27 A, 17 (1968).CrossRefADSGoogle Scholar
  15. 15.
    Gill, J. C.: Proc. Phys. Soc. (London)85, 119 (1965).CrossRefGoogle Scholar
  16. 16.
    Williams, F. I. B., Krupka, D. C., Breen, D. P.: Phys. Rev.179, 255 (1968).CrossRefADSGoogle Scholar
  17. 17.
    Ham, F. S.: Electron Paramagnetic Resonance. Ed.: S. Geschwind. New York: Plenum Press 1970.Google Scholar
  18. 18.
    McConnell, H. M.: J. chem. Phys.25, 709 (1956).CrossRefGoogle Scholar
  19. 19.
    Van Vleck, J. H.: J. chem. Phys.1, 72 (1939).CrossRefGoogle Scholar
  20. 20.
    Jette, A. N., Gilbert, T. L., Das, T. P.: Phys. Rev.184, 884 (1969); — Das, T. P., Jette, A. N., Knox, R. S.: Phys. Rev.134 A, 1079 (1964).CrossRefADSGoogle Scholar
  21. 21.
    Dienes, G. J., Hatcher, R. D., Smoluchowski, R.: Phys. Rev.157, 692 (1967).CrossRefADSGoogle Scholar
  22. 22.
    See Shuey, R. T., Beyeler, H. U.: J. appl. Math. and Phys.19, 278 (1968).CrossRefGoogle Scholar
  23. 23.
    ——, Zeller, H. R.: Helv. phys. Acta40, 845 (1967).Google Scholar
  24. 24.
    Covalency effects can reduce the spin-orbit interaction effects from those for a free molecule. These effects are relatively small and will be neglected in this paper. These effects are discussed in Ref. 6.Google Scholar
  25. 25.
    In Zeller and Känzig these principal axes of the O2 ion were designatedx, y, z. Here they are designatedx′, y′, z′ to avoid confusion with the cubic axesx, y, z used for the orbit lattice interactionH OL.H OL is a function ofx, y. z of theY 6 octahedral complex.Google Scholar
  26. 26.
    For an earlier discussion of this see T. G. Castner. Ph. D. thesis, Univ. of Illinois (unpublished).Google Scholar
  27. 27.
    The form of the molecular potential energy is clearly a functionV m (r, z2) and [R, V m] will include no termx′ y′ f (r) which couples theπ g states.Google Scholar
  28. 28.
    For 90° rotational jumps between two orientational axes in a plane perpendicular to the magnetic field no change inφ e occurs and the spin-flip matrix elements for tunnelling will be identically zero. For 60% rotational jumps the change inφ e will be less than that given by Eqs. (2) and (4) and will predict smaller spin-flip matrix elements than those given above.Google Scholar
  29. 29.
    Portis, A. M.: Phys. Rev.91, 1071 (1953).CrossRefADSGoogle Scholar
  30. 30.
    Castner, T. G., Jr.: Phys. Rev.115, 150 (1959).CrossRefADSGoogle Scholar
  31. 31.
    Portis, A. M.: Phys. Rev.104, 584 (1956); Anderson, P. W.: Phys. Rev.109, 1492 (1958).CrossRefADSGoogle Scholar
  32. 32.
    The author is indebted to H. Seidel for emphasizing the importance of this correction when the Gaussian envelope width is very small.Google Scholar
  33. 33.
    Castner, T. G., Jr.: Phys. Rev.130, 58 (1963).CrossRefADSGoogle Scholar
  34. 34.
    To avoid spin diffusion during adiabatic fast passage the conditionω m H mΔH PP/τ D should be satisfied, whereH m is the field modulation amplitude andω m its angular frequency.ω m T 1≈1/3 to 3 is the favorable range for measuringT 1. ForT 1≥1 sec insufficientH m was available to satisfy the above condition.Google Scholar
  35. 35.
    Cornelis, E., Boesman, E.: C. R. Acad. Sci. Paris268, 1325 (1969).Google Scholar
  36. 36.
    Faughnan, B. W., Strandberg, M. W. P.: J. Phys. Chem. Sol.19, 155 (1961).CrossRefGoogle Scholar
  37. 37.
    This is given approximately byΔH PP(T)=[(H PP(0))2+(ΔH(T))2]1/2. ForΔH(T)≫ΔH PP(0) this expression is satisfactory but becauseΔH PP(0) results from a Gaussian line shape, whileΔH(T) results from Lorentzian line shape a more exact unfolding expression is required whenΔH(T) is of orderΔH PP(0); see Castner, T. G., Jr.: Phys. Rev.130, 58 (1963).CrossRefADSGoogle Scholar
  38. 38.
    Van Vleck, J. H.: The Theory of Electric and Magnetic Susceptibilities. Oxford: Clarendon Press 1932, p. 91; 〈r 2/a 0 2〉 can also be estimated for atomic or molecular polarizabilities — see Hirschfelder, J. O., Curtiss, C. F., Bryon Bird, R.: Molecular Theory of Gases and Liquids. New York: J. Wiley and Sons, Inc. 1954, pp. 949–954.Google Scholar
  39. 39.
    These were calculated using low temperature elastic constant on density data to obtain the sound velocitiesc 1 andc t for [100], [110] and [111] axes. The averages represent a proportional weighting of 1/c i 5 for these three axes taking into account the number of each set of axes and the two values ofc t for the [110] propagation direction.Google Scholar
  40. 40.
    At larger temperatures whereΘ D/T is no longer much larger than eight, the integralI 8 starts to decrease resulting in a smaller temperature dependence thanT 9. A quantitative fit to this decrease is difficult because of phonon dispersion and the difficulty in choosing an appropriate effectiveΘ D characteristic of the most important phonons.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • T. G. CastnerJr.
    • 1
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations