Skip to main content
Log in

Space flow geometry of the radial free, wall and liquid jets with swirl

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A detailed similarity analysis of the incompressible radial free, wall, and luquid jets with swirl is presented. The analysis aims at a determination of the space flow geometry of the given generally formulated problems. The derived space flow geometry implies that the transformed formulations of the given problems are formally identical to those without swirl. Unlike the free jet, the wall and liquid jets with swirl are treated only for a Newtonian fluid but in this case the similarity analysis also provides the interpretation of a virtual origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A(x), B(x), E(x), T 1 (x), T 3 (x) :

positive similarity coefficients

C, C 2,C 3,C 4,D :

constants

K, l, m, R, S :

constants

e :

swirl parameter

f(η),h(η),T(η),T 2(η),T 4(η):

similarity functions

L :

radius of a circumference-point-source

M ,N, Q :

integral invariants

q (q max):

(maximum) velocity component in ξ-direction

u(u max):

(maximum) radial velocity component

v :

axial velocity component

w (w max):

(maximum) peripheral velocity component

x :

radial coordinate

y :

transverse coordinate

β:

outflow angle

δ:

characteristic jet width

η(x,y) :

similarity variable (scaledx andy coordinate)

ν:

molecular kinematic viscosity

\(\xi ( = \sqrt {x^2 - e^2 } )\) :

tangential coordinate

ρ:

fluid density

τ:

shear stress in ξ-direction

τ xy , τ ϕy :

shear stress tensor components

ψ:

stream function

References

  1. A. DeSouza and R.W. Pike, Fluid dynamics and flow patterns in stirred tanks with a turbine impeller.Can. J. Chem. Eng. 50 (1972) 15–23.

    Article  Google Scholar 

  2. K. Fallenius, On the swirling radial jet.Acta Polytechn. Scand., Appl Phys Ser No. Ph 120 (1977) 3–17.

    Google Scholar 

  3. P. Filip, V. Kolář and A.G. Curev, The plane jet as a limit case of the radial jet.Z. angew. Math. Mech. 64 (1984) 195–196.

    MATH  Google Scholar 

  4. V. Kolář, P. Filip and A.G. Curev, Comments on the radial turbulent jet.Acta Technica ČSAV 27 (1982) 563–567.

    ADS  MATH  Google Scholar 

  5. V. Kolář, P. Filip and A.G. Curev, The swirling radial jet.Appl. Sci. Res. 39 (1982) 329–335.

    Article  MathSciNet  MATH  Google Scholar 

  6. H.J. Nielsen, Ph.D. Thesis. Illinois Institute of Technology, Chicago (1958).

  7. M. O'Nan and W.H. Schwarz, The swirling radial free jet.Appl. Sci. Res. A 15 (1965) 289–312.

    Article  MATH  Google Scholar 

  8. N. Riley, Asymptotic expansions in radial jets.J. Math. Phys. 41 (1962) 132–146.

    MATH  Google Scholar 

  9. N. Riley, Radial jets with swirl, Part I.Quart. J. Mech. Appl. Math. 15 (1962) 435–458.

    MATH  MathSciNet  Google Scholar 

  10. H. Schlichting,Boundary Layer Theory. New York: McGraw-Hill (1968).

    Google Scholar 

  11. E.M. Smirnov, The similarity solution of the radial free jet with an arbitrary swirl (in Russian).Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki No. 5 (1977) 71–75.

    Google Scholar 

  12. L.A. Vulis and V.P. Kashkarov, The theory of jets of viscous fluid (in Russian) Moscow: Nauka (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filip, P., Kolář, V. & Curev, A.G. Space flow geometry of the radial free, wall and liquid jets with swirl. Appl. Sci. Res. 42, 185–196 (1985). https://doi.org/10.1007/BF02421349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02421349

Keywords

Navigation