Skip to main content
Log in

Modern and paleolimnological evidence for accelerated leaching and metal accumulation in soils in New England, caused by atmospheric deposition

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Empirical field evidence for changing chemical processes in soils caused by atmospheric deposition of pollutants consists of: (1) Long-term water quality data including total dissolved solids, concentrations of specific metals (e.g. Ca), and conductivity; (2) Cation exchange capacity and base saturation values for soils located on precipitation pH gradients; (3) Lysimeter studies; and (4) Chemical analysis of organic soils on precipitation pH and metal gradients. For well-drained organic soils, as precipitation pH decreases, metals are differentially leached at an accelerated rate (Mn>Ca>Mg≥Zn>Cd and Na>Al). Experimental field and laboratory lysimeter studies on soil columns yield similar results, with increases in leaching rates for soil solutions with pH=3 up to 100 × values for soil solutions with pH=5. Nearly 100% of the Pb from precipitation is accumulating in the organic soil layer or sediments. Zn is accumulating in soils and sediments where the pH's of precipitation, soil solutions, and surface waters are generally above 5 to 5.5. At lower pH values Zn and other chemically similar elements are desorbed/leached (net) at an accelerated rate.

Chemical analyses of dated sediment cores from high and low altitude lakes, with drainage basins relatively undisturbed for the last 200+ yr, reveal that increased deposition of metals on a regional scale started in the northeastern United States as early as 1880, consistent with increased fossil fuel consumption. This suggests acidified precipitation as early as 1880. Cores from historically acidified lakes (pH<≈5.3 to 5.5) indicate that, as acidification of surface waters occurs (caused by acidic deposition), concentrations of Zn, Mn, and Ca decrease in the sediment. Apparently the metals are leached from the detritus prior to sedimentation. This conclusion results from data from experimental acidification of sediment cores and the general observation that precipitation pH is generally ≥0.5 pH units lower than lake water pH. Accelerated leaching of soil in New England dates to earlier than 1900.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahamsen, G.: 1980, ‘Leaching of Plant Nutrients’, inEcol. Impact of Acid Precip. Proc., Sandefjord, Norway, 196 p.

  • Abrahamsen, G., Bjor, K., Horntvedt, R., and Tveite, B.: 1976, ‘Effects of Acid Precipitation on Coniferous Forest’, in F. H. Braekke (ed.),Impact of Acid Precipitation on Forest and Freshwater Ecosystems in Norway. SNFS-project, NISK, 1432 Aas-NLH, Norway, pp. 36–63.

    Google Scholar 

  • Allen, R. O. and Steinnes, E.: 1980, ‘Contribution from Long-range Atmospheric Transport to Heavy Metal Pollution of Surface Soil’, inEcol. Impact of Acid Precip. Proc., Sandefjord, Norway, pp. 102–103.

  • Buckley, D. E. and Cranston, R. E.: 1971,Chem. Geol. 7, 273.

    Article  CAS  Google Scholar 

  • Cogbill, C. V. and Likens, G. E.: 1974,Water Resour. Res. 10, 1133.

    Article  CAS  Google Scholar 

  • Cragin, J. H., Herron, M. M., and Langway, C. C., Jr.: 1975, ‘The Chemistry of 700 years of Precipitation at Dye 3, Greenland’, Cold Regions Res. and Engineering Lab. Res. Rep. 341, 18 p.

  • Cronan, C. S.: 1980,Oikos 34, 272.

    CAS  Google Scholar 

  • Cronan, C. S. and Schofield, C. L.: 1979,Science 204, 304.

    CAS  Google Scholar 

  • Davis, R. B. and Doyle, R. W.: 1969,Limnol. Oceanog. 14, 643.

    Google Scholar 

  • Davis, R. B. and Norton, S. A.: 1978,Pol. Arch. Hydrobiol. 25, 99.

    Google Scholar 

  • Farell, E. P., Nilsson, I., Tamm, C. O., and Wiklander, G.: 1980, ‘Effects of Artificial Acidification With Sulfuric Acid on Tree growth and Soil Chemistry in Scots Pine Forest’, inEcol. Impact of Acid Precip. Proc., Sandefjord, Norway, pp. 186–187.

  • Galloway, J. N., Cowling, E. B., Gorham, E., and McFee, W. W.: 1978, ‘A National Program for Assessing the Problem of Atmospheric Deposition: A Report to the Council on Environmental Quality’, National Atmos. Dep. Prog., 97 p.

  • Galloway, J. N., Eisenreich, S. J., and Scott, B. C.: 1981, ‘Toxic Substances in Atmospheric Deposition: A Review and Assessment’, EPA 560 5-80-001: 1–148.

  • Gjessing, E. T., Henriksen, A., Johannessen, M., and Wright, R. F.: 1976, ‘Effects of Acid Precipitation on Freshwater Chemistry’, in F. H. Braekke (ed.),Impact of Acid Precipitation on Forest and Freshwater Ecosystems in Norway, SNSF-project, NISK, 1432 Aas NLH, Norway: 64–85.

    Google Scholar 

  • Hanson, D. W.: 1980, ‘Acidic Precipitation-induced Chemical Changes in Subalpine Fir Forest Organic Soil Layers’, Unpub. M.S. thesis, Univ. of Maine at Orono, Maine, 90 p.

    Google Scholar 

  • Johnston, S. E.: 1980, ‘A Comparison of Dating Methods in Laminated Lake Sediments in Maine’, Unpub. M.S. thesis, Univ. of Maine at Orono, Maine, 79 p.

    Google Scholar 

  • Johnston, S. E., Norton, S. A., Hess, C. T., Davis, R. B., and Anderson, R. S.: 1981, ‘Chronology of Atmospheric Deposition of Acids and Metals in New England, Based on the Record in Lake Sediments’, Proc. Am. Chem. Soc. Envir. Chem. Div., Ann Arbor Press Club.

  • Likens, G. E., Wright, R. F., Galloway, J. N., and Butler, T. J.: 1979, ‘Acid Rain’,Sci. Am. 214(4), 43–51.

    Article  Google Scholar 

  • Malmer, N.: 1976,Ambio 5, 231.

    CAS  Google Scholar 

  • Mayer, R. and Ulrich, B.: 1976, ‘Acidity of Precipitation as Influenced by the Filtering of Atmospheric Sulphur and Nitrogen Compounds — Its Role in the Element Balance and Effect on Soil’, in L. S. Dochinger and T. A. Seliga (eds.),Proceedings of the First International Symposium on Acid Precipitation and the Forest Ecosystem. U.S. Dept. Agric. For. Serv. Gen. Tech. Rep. NE-23, Washington, D.C., pp. 737–744.

  • Norton, S. A.: 1973,Econ. Geol. 68, 353.

    Article  CAS  Google Scholar 

  • Norton, S. A. and Davis, R. B.: 1981, ‘Responses of Maine Lakes to Atmospheric Inputs of Acids and Heavy Metals’, Final Report, Office of Wat. Res. and Tech. U.S. Dept. Inter.

  • Odén, S.: 1976, ‘The Acidity Problem — An Outline of Concepts’, in L. S. Dochinger and T. A. Seliga (eds.),Proceedings of the First International Symposium on Acid Precipitation and the Forst Ecosystem, U.S. Dept. Agric. For. Serv. Gen. Tech. Rep. NE-23, Washington, D.C., pp. 1–36.

  • Overrein, L. N.: 1972,Ambio. 1, 145.

    CAS  Google Scholar 

  • Overrein, L. N., Seip, H. M., and Tollan, Arne: 1980, ‘Acid Precipitation — Effects on Forest and Fish’, Final Report, SNFS Project: Oslo-As: 175 p.

  • Reiners, W. A. and Lang, G. E.: 1979,Ecology 60, 403.

    Article  Google Scholar 

  • Reiners, W. A., Marks, R. H., and Vitousek, P. M.: 1975,Oikos. 26, 264.

    CAS  Google Scholar 

  • Rühling, A. and Tyler, G.: 1968,Bot. Not. 121, 321.

    Google Scholar 

  • Rühling, A. and Tyler, G.: 1969,Bot. Not. 122, 248.

    Google Scholar 

  • Rühling, A. and Tyler, G.: 1971,J. Appl. Ecol. 8, 497.

    Google Scholar 

  • Rühling, A. and Tyler, G.: 1973,Water, Air, and Soil Pollut. 2, 445.

    Article  Google Scholar 

  • Schlesinger, W. H. and Reiners, W. A.: 1974,Ecology 55, 378.

    Article  Google Scholar 

  • Semonin, R. G., Bowersox, V. C., Gatz, D. F., Peden, M. E., and Stensland, G.J.: 1981, ‘Study of Atmospheric Pollution Scavenging: Ill. Inst. Nat. Res.’, 19th Progress Rept.

  • Siccama, T. G. and Smith, W. H.: 1978,Environ. Sci. Technol. 12, 593.

    Article  CAS  Google Scholar 

  • Siccama, T. G., Smith, W. H., and Mader, D. L.: 1980,Environ. Sci. Technol. 14, 54.

    Article  CAS  Google Scholar 

  • Smith, W. F. and Siccama, T. G.: 1981,J. Envir. Qual. 10, 323.

    Article  CAS  Google Scholar 

  • Stuanes, A. O.: 1980, ‘Release and Loss of Nutrients, from a Norwegian Forest Soil Due to Artificial Rain of Varying Acidity’, inEcol. Impact of Acid Precip. Proc., Sandefjord, Norway, pp. 152–153.

  • TeBrake, W. H.: 1975,Tech. Cult. 16, 337.

    CAS  Google Scholar 

  • Tyler, G.: 1981,Water, Air, and Soil Poll. 15, 353.

    Article  CAS  Google Scholar 

  • Ulrich, B.: 1980, ‘Deposition, Production and Consumption of Hydrogen Ions in a Beech and a Spruce Ecosystem in the Solling District’, inEcol. Impact of Acid Precip. Proc., Sandefjord, Norway.

  • Wood, T. and Bormann, F. H.: 1976, ‘Short-term Effects of a Simulated Acid Rain Upon the Growth and Nutrient Relationships ofPinus strobus I, in L. S. Dochinger and T. A. Seliga (eds.),Proceedings of the First International Symposium on Acid Precipitation and the Forest Ecosystem, Tech. Rep. NE-23, Washington, D.C., pp. 815–825.

  • Wright, R. F., Conroy, N., Dickson, W. T., Harriman, R., Henriksen, A., and Schofield, C. L.: 1980, ‘Acidified Lake Districts of the World: A Comparison of Water Chemistry of Lakes in Southern Norway, Southern Sweden, Southwestern Scotland, the Adirondack Mountains of New York, and South-eastern Ontario’, inEcol. Impact of Acid Precip. Proc., Sandefjord, Norway, pp. 377–379.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, D.W., Norton, S.A. & Williams, J.S. Modern and paleolimnological evidence for accelerated leaching and metal accumulation in soils in New England, caused by atmospheric deposition. Water Air Soil Pollut 18, 227–239 (1982). https://doi.org/10.1007/BF02419415

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02419415

Keywords

Navigation