Ionics

, Volume 7, Issue 3, pp 203–209 | Cite as

Investigation of the state of the electrochemically generated adsorbed O species on Au films interfaced with Y2O3-doped-ZrO2

  • D. Tsiplakides
  • S. G. Neophytides
  • C. G. Vayenas
Article

Abstract

Adsorbed O species on Au interfaced with Y2O3-doped-ZrO2 are generated by electrochemical O2− supply. It was found that two oxygen chemisorbed states are formed, which desorb at 420 °C (state α) and 550 °C (state β) with activation energies of desorption ranging between 115–145 kJ/mol and 235–270 kJ/mol, respectively. The strong interaction of the β-state O species with the Au surface causes an over 600 mV increase in Au surface potential and work function while the α-state O species is formed at even more positive catalyst-electrode potential. State α is attributed to normally adsorbed atomic O while the more ionic state β is only created electro-chemically and is mainly responsible for the work function increase of the Au catalyst-electrode surface. Their desorption activation energies of both states decrease linearly with increasing catalyst-electrode potential with slopes of the order of four.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [1]
    M. Haruta, Catalysis Today,36, 153 (1997).CrossRefGoogle Scholar
  2. [2]
    T. Hayakawa, K. Sato, T. Tsunoda, K. Suzuki, M. Shimizu and K. Takehira, J. Chem. Soc., Chem. Commun. 1743 (1994).Google Scholar
  3. [3]
    O.A. Marina, V.A. Sobyanin and V.D. Belyaev, Catal. Today13, 567 (1992).CrossRefGoogle Scholar
  4. [4]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S. Neophytides in: Modern Aspects of Electrochemistry (J.O' M. Bockris, B.E. Conway and R.E. White, Eds.), Number 29, p. 57 (1996).Google Scholar
  5. [5]
    D. Tsiplakides and C.G. Vayenas, J. Electrochem. Soc.148, 1 (2001).CrossRefGoogle Scholar
  6. [6]
    S.G. Neophytides, S. Zafeiratos and S. Kennou, Solid State Ionics136–137, 801–806 (2000).CrossRefGoogle Scholar
  7. [7]
    M.E. Schrader, J. Colloid Interface Sci.59, 456 (1977).CrossRefGoogle Scholar
  8. [8]
    M.E. Schrader, Surf. Sci.78, L227 (1978).Google Scholar
  9. [9]
    M.A. Chesters, and G.A. Somorjai, Surf. Sci.52, 21 (1975).CrossRefGoogle Scholar
  10. [10]
    P. Legare, L. Hilaire, M. Sotto, and G. Maire, Surf. Sci.91, 175 (1980).CrossRefGoogle Scholar
  11. [11]
    D.D. Eley, and P.B. Moore, Surf. Sci.76, L599 (1978).Google Scholar
  12. [12]
    N.D.S. Canning, D. Outka, and R.J. Madix, Surf. Sci.141, 240 (1984).CrossRefGoogle Scholar
  13. [13]
    J.J. Pireaux, M. Liehr, P.A. Thiry, J.P. Delrue, and R. Caudano, Surf. Sci.141, 221 (1984).CrossRefGoogle Scholar
  14. [14]
    J.W. Schultze, Electrochim. Acta17, 451 (1972).CrossRefGoogle Scholar
  15. [15]
    M.I. Florit, M.E. Martins, and A.J. Arvia, J. Electroanal. Chem.126, 255 (1981).Google Scholar
  16. [16]
    F. Chao, M. Costa, and A. Tadjeddine, Surf. Sci.46, 265 (1974).CrossRefGoogle Scholar
  17. [17]
    M.M. Jaksic, B. Johansen, and R. Tunold, International Journal of Hydrogen Energy18, 91 (1993).CrossRefGoogle Scholar
  18. [18]
    M. Peuckert, F.P. Coenen, and H.P. Bonzel, Surf. Sci.141, 515 (1984).CrossRefGoogle Scholar
  19. [19]
    R.R. Ford, and J. Pritchard, JCS Chemistry Commun. 362 (1968).Google Scholar
  20. [20]
    N.B. Bazhutin, G.K. Boreskov, and V.I. Savshenko, Reaction Kinetics Catalysis Letters10, 337 (1979).CrossRefGoogle Scholar
  21. [21]
    S. Evans, E.L. Avans, D.E. Parry, M.J. Tricker, M.J. Walters, and J.M. Thomas, Faraday Trans. Chem. Soc. 97 (1974).Google Scholar
  22. [22]
    J.J. Pireaux, M. Chtaib, J.P. Delrue, P.A. Thiry, M. Liehr, and R. Caudano, Surf. Sci.141, 211 (1984).CrossRefGoogle Scholar
  23. [23]
    M. Hecq, A. Hecq, and M. Liemans, J. Appl. Phys.49, 6176 (1978).CrossRefGoogle Scholar
  24. [24]
    A. Hecq, M. Vandy, and M. Hecq, J. Chem. Phys.72, 2876 (1980).CrossRefGoogle Scholar
  25. [25]
    N. Saliba, D.H. Parker, B.E. Koel, Surf. Sci.,410, 270 (1998).CrossRefGoogle Scholar
  26. [26]
    M.A. Lazaga, D.T. Wickham, D.H. Parker, G.N. Kastanas, and B.E. Koel, in: Catalytic Selective Oxidation (J.W. Hightower, and S.T. Oyama, Eds.), p. 90. ACS, Washington, DC, 1993.Google Scholar
  27. [27]
    D.H. Parker, and B.E. Koel, J. Vac. Sci. Technol.A8, 2585 (1990).Google Scholar
  28. [28]
    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.,97, 8845 (1993).CrossRefGoogle Scholar
  29. [29]
    S.G. Neophytides, D. Tsiplakides and C.G. Vayenas, J. Catal., 178, 414–428 (1998).CrossRefGoogle Scholar
  30. [30]
    J.L. Falconer and R.J. Madix Surf. Sci.48, 393 (1975).CrossRefGoogle Scholar
  31. [31]
    Y. Uchida, X. Bao, K. Weiss, R. Schlogl, Surf. Sci.401, 469 (1998).CrossRefGoogle Scholar
  32. [32]
    D. Tsiplakides and C. G. Vayenas, J. Catal.185, 237 (1999).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2001

Authors and Affiliations

  • D. Tsiplakides
    • 1
  • S. G. Neophytides
    • 2
  • C. G. Vayenas
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Institute of Chemical Engineering and High Temperature Chemical ProcessesPatrasGreece

Personalised recommendations