Advertisement

Ionics

, Volume 7, Issue 3, pp 187–191 | Cite as

Significance of Mg doped LiMn2O4 spinels as attractive 4 V cathode materials for use in lithium batteries

  • R. Thirunakaran
  • N. Kalaiselvi
  • P. Periasamy
  • B. Ramesh Babu
  • N. G. Renganathan
  • N. Muniyandi
  • M. Raghavan
Article

Abstract

LiMn2O4 spinel is one of the most promising cathode materials for lithium-ion batteries because of its cheapness and eco-friendliness. Due to Jahn-Teller distortion, the capacity fades, however, upon repeated cycling. Attempts are being made to improve the cycle life of the spinel by substitution of manganese with other cations. In this paper we report the effect of partial substitution of manganese by Mg2+ ions in the LiMn2O4 phase. LiMgyMn2−yO4 (y=0 – 0.3) has been synthesized by a thermal method and characterized using XRD, TG/DTA and FTIR. The electrochemical performance is correlated with the dopant concentration.

Keywords

Discharge Capacity Cathode Material Spinel Structure Solid State Ionic Simultaneous Thermal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    Y. Xia and M. Yoshio, J. Electrochem. Soc.144, 2593 (1997).CrossRefGoogle Scholar
  2. [2]
    G. Pistoia, A. Antonini, R. Rosati and D. Zane, Electrochim. Acta41, 2863 (1996).CrossRefGoogle Scholar
  3. [3]
    M.M. Thackeray, Y. Shao-Horn and A. Kahaian, J. Electrochem. Solid State Letter1, 160 (1996).Google Scholar
  4. [4]
    A. Yamada, J. Solid State Chem.122, 160 (1996).CrossRefGoogle Scholar
  5. [5]
    P. Arora, B.N. Popov, R.E. White, J. Electrochem. Soc.145, 807 (1998).CrossRefGoogle Scholar
  6. [6]
    D.H. Jiang, J.Y. Shin and S.M. Oh, J. Electrochem. Soc.143, 2204 (1996).CrossRefGoogle Scholar
  7. [7]
    Y. Gao and J.R. Dahn, Solid State Ionics84, 33 (1996).CrossRefGoogle Scholar
  8. [8]
    M. Inaba, R. Kostecki, K. Kinoshita and F. Mc Larnon, 194th Electrochem. Soc. Meeting, Vol. 98-2, No. 1–6, Ab. No: 125 (1998).Google Scholar
  9. [9]
    L. Guohua, H. Ikuta, T. Vchida, M. Wakihara, J. Electrochem. Soc.143, 178 (1996).CrossRefGoogle Scholar
  10. [10]
    M.M. Thackeray, P.J. Johnson, L.A. Depicciotto, Mat. Res. Bull.19, 179 (1984).CrossRefGoogle Scholar
  11. [11]
    T.J. Richardson and P.N. Ross, Mat. Res. Bull.8, 31 (1996).Google Scholar
  12. [12]
    M. Tabuchi, K. Ado, M. Kobayashi, H. Sakeabe, H. Kageyama, E. Masquelier, M. Yonemura, A. Hirano, R. Kanno, J. Mat. Chem.9, 199 (1999).CrossRefGoogle Scholar
  13. [13]
    Ullmann's Encyclopaedia of Industrial Chem., Verlagsgessellschaft mbH, Weinheim, A16, 5th Edition, VCH, 131 (1990).Google Scholar
  14. [14]
    Ullmann's Encyclopaedia of Industrial Chem., Verlagsgessellschaft mbH, Weinheim, A15, 5th Edition, VCH, 596 (1990).Google Scholar
  15. [15]
    D.R. Lide (Ed.) Hand Book of Chemistry Physics, 74th Edition, The Chemical Rubber Company Ohio (1993–1994).Google Scholar
  16. [16]
    A. Lundbald and B. Bergman, Solid State Ionics,96, 173 (1997).CrossRefGoogle Scholar
  17. [17]
    W.V. Malik, D.R. Gupta, I. Masood and R.S. Gupta, J. Mat. Sci. Letter4, 532 (1985).CrossRefGoogle Scholar
  18. [18]
    A. Reismen, J. Am. Chem. Soc.80, 3558 (1958).CrossRefGoogle Scholar
  19. [19]
    M.V. Smirnov, I.Ya. Lyubimtsera, L.A. Taiovkina and Yu.N. Krasnov, Russ. J. Inor. Chem.16, 130 (1971).Google Scholar
  20. [20]
    R.G. Gummow, A. Dedock, M.M. Thackeray, Solid State Ionics59, 691 (1994).Google Scholar

Copyright information

© IfI - Institute for Ionics 2001

Authors and Affiliations

  • R. Thirunakaran
    • 1
  • N. Kalaiselvi
    • 1
  • P. Periasamy
    • 1
  • B. Ramesh Babu
    • 1
  • N. G. Renganathan
    • 1
  • N. Muniyandi
    • 1
  • M. Raghavan
    • 1
  1. 1.Advanced Batteries DivisionCentral Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations