Atomic Energy

, Volume 82, Issue 6, pp 448–462 | Cite as

The absorption of deuterium by carbon-based facing materials on components in contact with the plasma in a thermonuclear reactor

  • A. E. Gorodetskii
  • A. V. Markin
  • V. N. Chernikov
  • A. P. Zakharov
  • T. A. Burtseva
  • I. V. Mazul
  • N. N. Shipkov
  • G. D. Tolstolutskaya
  • V. F. Rybalko


The conditions have been proposed for performing modeling experiments making it possible to predict the accumulation of hydrogen isotopes in carbon materials which are in contact with a tokamak plasma acting as a source of particles having a flux density of between 3×1016 and 3×1019 cm−2·sec−1. By analyzing the reemission fluxes formed in the stopping zone of the particles implanted from the plasma it is suggested that the action of the plasma as regards the sorption of hydrogen is identical to that of annealing the material in an atmosphere of hydrogen isotopes at a pressure of 1–103 Pa and a temperature of 1200–1700 K. The quantity of absorbed deuterium in POCO, UAM, RGT-B, and USB increases as the temperature is lowered and the pressure is raised (1500 K, 0.66 Pa→1200 K, 133 Pa). As regards their sorption of deuterium, POCO, UAM, and RGT behave similarly. There is a tendency for the sorption capacity of materials doped with boron to be reduced. In a class of itself is the isotropic material USB, whose sorption capacity is a factor of 10–100 lower than that of undoped graphite. The introduction into these materials of radiation-induced defects (T=300 K) by means of ion irradiation in the range 0.1–1 dpa results in a continuous rise in the deuterium sorption capacity by a factor of 10–100 (up to 10−2 atomic fraction). The USB graphite demonstrates record low increments in the sorption capacity. In the fluence range identical to 1–10 dpa the sorption capacity of carbon materials for hydrogen is almost constant. The process of the sorption of hydrogen isotopes can be described as the filling of two ensembles of traps, deep traps which are difficult to access and readily accessible Langmuir traps. In the RGT-B materials containing 0.1% of boron, the traps introduced by irradiation with 300-keV neon ions vanish on annealing in a vacuum (T=1800 K, t=1 min).


Hydrogen Graphite Boron Deuterium Flux Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Takenaga, N. Asakura, K. Shimizu, et al., “Analyses of neutral particle penetration and particle confinement in JT-60U,” J. Nucl. Mater.,220–222, 429–432 (1995).CrossRefGoogle Scholar
  2. 2.
    M. A. Mahdavi, S. L. Allen, D. R. Baker, et al., “Divertor heat and particle control experiments on the DIII-D tokamak,” J. Nucl. Mater.,220–222, 13–24 (1995).CrossRefGoogle Scholar
  3. 3.
    P. K. Mioduszewski, J. T. Hogan, L. W. Owen, et al., “Experiments on steady state particle control in Tore Supra and DIII-D,” J. Nucl. Mater.,220–222, 91–103 (1995).CrossRefGoogle Scholar
  4. 4.
    R. V. Budny, D. Coster, D. Stotler, et al., “Particle balance in a TFTR supershot,” J. Nucl. Mater.,196–198, 462 (1992).Google Scholar
  5. 5.
    W. Poschenrieder, K. Behringer, H.-St. Bosch, et al., “Molecular impurities in ASDEX UPGRADE plasma discharges,” J. Nucl. Mater.,220–222, 36–49 (1995).CrossRefGoogle Scholar
  6. 6.
    Ph. Ghendrih, T. W. Petrie, C. Lasnier, et al., “Bifurcation to divertor Marfes on DIII-D,” J. Nucl. Mater.,220–222, 305–309 (1995).CrossRefGoogle Scholar
  7. 7.
    R. Maingi, P. K. Mioduszewski, J. W. Cuthbertson, et al., “Effect of low density H-mode operation on edge and divertor plasma parameters,” J. Nucl. Mater.,220–222, 320–324 (1995).CrossRefGoogle Scholar
  8. 8.
    C. S. Pitcher, H. S. Bosch, K. Büchl, et al., “The effect of density on divertor conditions in ASDEX UPGRADE,” J. Nucl. Mater.,220–222, 213–217 (1995).CrossRefGoogle Scholar
  9. 9.
    N. Hosogane, M. Shimada, K. Shimizu, et al., “Measurement of gaseous impurities in JT-60U,” J. Nucl. Mater.,220–222, 415–419 (1995).CrossRefGoogle Scholar
  10. 10.
    P. C. Stangeby and G. M. McCracken, “Plasma boundary phenomena in tokamaks,” Nucl. Fusion,30, 1225–1379 (1990).Google Scholar
  11. 11.
    M. A. Lomidze, A. E. Gorodetsky, S. L. Kanashenko, et al., “Model for deuteron retention and reemission in graphites in a wide range of temperatures and energies,” J. Nucl. Mater.,208, 313–323 (1994).CrossRefGoogle Scholar
  12. 12.
    E. Hoinkis, “The chemisorption of hydrogen on porous graphites at low pressure and at elevated temperature,” J. Nucl. Mater.,182, 93–106 (1991).CrossRefGoogle Scholar
  13. 13.
    R. A. Causey, “The interaction of tritium with graphite and its impact on tokamak operations,” J. Nucl. Mater.,162–164, 151–161 (1989).CrossRefGoogle Scholar
  14. 14.
    S. L. Kanashenko, A. E. Gorodetsky, V. N. Chernikov, et al., “Hydrogen adsorption on and solubility in graphites,” J. Nucl. Mater.,233–237, 1207–1212 (1996).CrossRefGoogle Scholar
  15. 15.
    A. A. Haasz, P. Franzen, J. W. Davis, et al., “Two-region model for hydrogen trapping in and release from graphite,” J. Appl. Phys.,77, No. 1, 66–86 (1995).CrossRefGoogle Scholar
  16. 16.
    S. L. Kanashenko, A. E. Gorodetsky, A. P. Zakharov and W. R. Wampler, “Influence of radiation damage in graphite and beryllium materials on hydrogen retention,” Phys. Scripta,T64, 36–40 (1996).Google Scholar
  17. 17.
    I. I. Arkhipov, A. E. Gorodetsky, A. P. Zakharov, et al., “Bulk retention of deuterium in graphites exposed to deuterium plasma at high temperature,” J. Nucl. Mater.,233–237, 1202–1206 (1996).CrossRefGoogle Scholar
  18. 18.
    G. Federici, D. Holland, J. Brooks, et al., “Preliminary assessment of the tritium inventory and permeation in plasma facing components of ITER,” in: Proc. Symp. on Fusion Engineering, Champaign, Urbana, USA, Sept. 30 to Oct. 5 (1995).Google Scholar
  19. 19.
    T. Tanabe, “Radiation damage of graphite-degradation of material parameters and defect structures,” Phys. Scripta,T64, 7–16 (1996).Google Scholar
  20. 20.
    W. B. Gauster, W. R. Spears, et al., “Requirements and selection criteria for plasma facing materials and components in the ITER EDA design,” At. Plasma Mater. Interact. Data. Fusion, in: Nucl. Fusion Supplement5, 7–18 (1994).Google Scholar
  21. 21.
    R. Behrisch, “Particle bombardment and energy fluxes to the vessel walls in controlled thermonuclear fusion devices,” At. Plasma Mater. Interact. Data. Fusion, in: Nucl. Fusion Supplement1, 7–16 (1991).Google Scholar
  22. 22.
    T. D. Burchell and T. Oku, “Material properties data for fusion reactor plasma facing carbon-carbon composites,” At. Plasma Mater. Interact. Data. Fusion, in: Nucl. Fusion Supplement5, 77–128 (1994).Google Scholar
  23. 23.
    T. D. Burchell, “Radiation damage in carbon-carbon composites: structure and property effects,” Phys. Scripta,T64, 17–25 (1996).Google Scholar
  24. 24.
    R. Behrisch and G. Venus, “Heat removal by divertor plate and limiter materials in fusion reactors,” J. Nucl. Mater.,202, 1–9 (1993).CrossRefGoogle Scholar
  25. 25.
    C. Garsía-Rosales, “First-wall erosion in fusion devices,” J. Nucl. Mater.,212–215, 97–100 (1994).CrossRefGoogle Scholar
  26. 26.
    T. A. Burtseva, O. K. Chugunov, E. F. Dovguchits, et al., “Resistance of carbon-based materials for the ITER divertor under different radiation fluxes,” J. Nucl. Mater.,191–194, 309–314 (1992).CrossRefGoogle Scholar
  27. 27.
    M. Guseva, “Experimental investigation of the energy and temperature dependence of beryllium self-sputtering,” in: Report of Final IAEA Research Coordination Meeting on Plasma-Interaction Induced Erosion of Fusion Reactor Materials, Vienna, Oct. 9–11 (1995), pp. 1–7.Google Scholar
  28. 28.
    G. M. Volkov, “Supermolecular structure of graphitized carbon,” Khim. Tverd. Topl., No. 3, 29–34 (1977).Google Scholar
  29. 29.
    Yu. S. Virgil'ev and E. I. Kurolenkin, “Investigation of radiation-induced changes in the properties of carbon ceramic,” At. Energ.,57, No. 5, 353–356 (1994).Google Scholar
  30. 30.
    V. N. Chernilov, V. Kh. Alimov, A. E. Gorodetsky, et al., “Microstructure and some properties of boron modified graphite USB-15,” J. Nucl. Mater.,191–194, 320–325 (1992).CrossRefGoogle Scholar
  31. 31.
    R. A. Causey, K. L. Wilson, W. R. Wampler, and B. L. Doyle, Fusion Technol.,19, 1585 (1991).Google Scholar
  32. 32.
    S. Myers, G. Gaskey, D. Rawl, and R. Sisson, “Ion-beam profiling of He-3 in tritium-exposed type 304L and type 21-6-9 stainless steels,” Metall. Trans.,14A, 2261–2267 (1983).Google Scholar
  33. 33.
    A. I. Zhukov, G. D. Tolstolutskaya, V. F. Rybalko, et al., “Determination of the occurrence of deuterium in materials from the yield of nuclear reaction products,” Vopr. At. Nauk Tekh. Ser. Fiz. Radiats. Povrezh. Radiats. Materialoved., Nos. 1-2 (58–59), 133–135 (1992).Google Scholar
  34. 34.
    V. N. Chernikov, A. E. Gorodetsky, S. L. Kanashenko, et al., “Trapping of deuterium in boron and titanium modified graphites before and after carbon ion irradiation,” J. Nucl. Mater.,217, 250–257 (1994).CrossRefGoogle Scholar
  35. 35.
    K. L. Wilson and W. L. Hsu, “Hydrogen recycling properties of graphite,” J. Nucl. Mater.,145–147, 121–130 (1987).CrossRefGoogle Scholar
  36. 36.
    W. R. Wampler, B. L. Doyle, R. A. Causey, and K. L. Wilson, “Trapping of deuterium at damage in graphite,” J. Nucl. Mater.,176–177, 983–986 (1990).CrossRefGoogle Scholar
  37. 37.
    V. N. Chernikov, A. E. Gorodetsky, S. L. Kanashenko, et al., “Deuterium trapping in graphites irradiated with C+ ions at 350 and 673 K,” J. Nucl. Mater.,220–222, 912–916 (1995).CrossRefGoogle Scholar
  38. 38.
    A. Markin, A. Gorodetsky, and A. Zakharov, “Effect of microstructure on hydrogen retention in modified graphite,” in: Intern. Workshop on Interfacial Effects in Quantum Engineering Systems (IEQES-96), Mito, Japan, Aug. 21–23 (1996).Google Scholar
  39. 39.
    R. Barrer, “Sorption processes on diamond and graphite, Part 1: Reaction with hydrogen”, J. Chem. Soc., 1256–1268 (1936).Google Scholar
  40. 40.
    A. Markin, A. Gorodetsky, S. Kanashenko, and A. Zakharov, “Deuterium sorption in graphite at high temperature,” in: Proc. Second Japan—CIS Workshop on the Interaction of Fuel Particles with Fusion Materials (IFPEM 2), St. Petersburg, Russia, Oct. 4–6 (1993), pp. 24–28.Google Scholar
  41. 41.
    I. I. Arkhipov, A. E. Gorodetskii, A. P. Zakharov, et al., “Accumulation of deuterium in RGT-91 and POCO-AXCF-5Q graphite held in a deuterium plasma at high temperature,” At. Énerg.,80, No. 3, 174–179 (1996).Google Scholar
  42. 42.
    R. A. Causey, W. R. Wampler, and O. I. Buzhinskij, “Tritium retention characteristics of several low-Z materials,” J. Nucl. Mater.,196–198, 977–980 (1992).Google Scholar
  43. 43.
    E. Hoinkis, “Thermodesorption of deuterium from a porous graphitic carbon,” J. Nucl. Mater.,183, 9–18 (1991).CrossRefGoogle Scholar
  44. 44.
    P. Walker, R. Taylor, and J. Ranish, “An update of the carbon-oxygen reaction,” Carbon,29, No. 3, 411–421 (1991).CrossRefGoogle Scholar
  45. 45.
    W. Thomas, “The adsorption of hydrogen at graphite,” J. Chem. Phys.,58, 61–69 (1961).Google Scholar
  46. 46.
    L. Jones and P. Thrower, “Influence of boron on carbon fiber microstructure, physical properties, and oxidation behavior,” Carbon,29, No. 2, 251–269 (1991).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. E. Gorodetskii
  • A. V. Markin
  • V. N. Chernikov
  • A. P. Zakharov
  • T. A. Burtseva
  • I. V. Mazul
  • N. N. Shipkov
  • G. D. Tolstolutskaya
  • V. F. Rybalko

There are no affiliations available

Personalised recommendations