Advertisement

General Relativity and Gravitation

, Volume 24, Issue 12, pp 1255–1266 | Cite as

Scalar field quantization in stationary, non-static spacetimes

  • Tevian Dray
  • Ravi Kulkarni
  • Corinne A. Manogue
Article

Abstract

A quantization procedure is given for the scalar field on stationary, axisymmetric background spacetimes with orthogonal 2-surfaces. The procedure is based on observers orthogonal to surfaces of constant Killing time, and thus agrees with the usual procedure for static spacetimes. For stationary but nonstatic spacetimes the procedure differs from the usual one but nonetheless leads to a natural quantization scheme. Applying the procedure to flat space in rotating coordinates gives the standard, inertial Minkowski vacuum. For the Kerr spacetime, the procedure yields a particle definition which is well-defined everywhere outside the horizon. The above observers are just nonrotating ZAMO's, and the vacuum state smoothly interpolates between the “in” and “out” Boulware vacua.

Keywords

Scalar Field Vacuum State Usual Procedure Quantization Scheme Flat Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dray, T., Kulkarni, R., and Manogue, C. A. (1990). InProc. 3rd Canadian Conference on General Relativity and Relativistic Astrophysics, University of Victoria, (1989), A. Coley, F. Cooperstock, B. Tupper, eds. (World Scientific, Singapore).Google Scholar
  2. 2.
    Ashtekar, A., and Magnon, A. (1975).Proc. Roy. Soc. Lond. A346, 375.ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Unruh, W. G. (1974).Phys. Rev. D. 10, 3194; DeWitt, B. S. (1975).Phys. Rep. 19C, 297.CrossRefADSGoogle Scholar
  4. 4.
    Lewis, T. (1932).Proc. Roy. Soc. Lond. A136, 176; Papapetrou, A. (1966).Ann. Inst. H. Poincaré A4, 83; Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge).ADSMATHGoogle Scholar
  5. 5.
    Pfautsch, J. D. (1981). “Quantum field theory in stationary coordinate systems”, Ph.D. thesis, University of Texas at Austin: Manogue, C. A. (1984). “The vacuum in the presence of electromagnetic fields and rotating boundaries”, Ph.D. thesis, University of Texas at Austin; Manogue, C. A. (1987).Phys. Rev. D 35, 3783.Google Scholar
  6. 6.
    Letaw, J. R., and Pfautsch, J. D. (1980).Phys. Rev. D 22, 1345.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Kulkarni, R., Challathurai, V., and Dadhich, N. (1988)Class. Quant. Grav. 11, 1443. See also: Bardeen, J. M. (1970).Astrophys. J. 162, 71; Bardeen, J. M., Press, W. H., and Teukolsky, S. A. (1972).Astrophys. J. 178, 347; Greene, R. D. Schucking, E. L., and Vishveshwara, C. V. (1975).J. Math. Phys. 16, 153.CrossRefADSGoogle Scholar
  8. 8.
    Steve Fulling, private communication.Google Scholar
  9. 9.
    Fulling, S. A. (1975). “Varieties of Instability of a Boson Field in an External Potential and Black Hole Klein Paradoxes”, King's College technical report; later published as the appendix to Fulling, S. A. (1989).Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge University Press, Cambridge).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Tevian Dray
    • 1
  • Ravi Kulkarni
    • 2
  • Corinne A. Manogue
    • 3
  1. 1.Department of MathematicsOregon State UniversityCorvallisUSA
  2. 2.Department of MathematicsUniversity of PoonaPuneIndia
  3. 3.Department of PhysicsOregon State UniversityCorvallisUSA

Personalised recommendations