Advertisement

Annali di Matematica Pura ed Applicata

, Volume 110, Issue 1, pp 353–372 | Cite as

Best constant in Sobolev inequality

  • Giorgio Talenti
Article

Summary

The best constant for the simplest Sobolev inequality is exhibited. The proof is accomplished by symmetrizations (rearrangements in the sense of Hardy-Littlewood) and one-dimensional calculus of variations.

Keywords

Sobolev Inequality Good Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Bers - F. John - M. Schechter,Partial Differential Equations, Interscience (1964)Google Scholar
  2. [2]
    G. A. Bliss,An integral inequality, Journal London Math. Soc.,5 (1930).Google Scholar
  3. [3]
    H. Federer,Curvature measure, Trans. Amer. Math. Soc.,93 (1959).Google Scholar
  4. [4]
    H. Federer - W. Fleming,Normal and integral currents, Annals of Math.,72 (1960).Google Scholar
  5. [5]
    W. Fleming,Functions whose partial derivatives are measures, Illinois J. Math.,4 (1960).Google Scholar
  6. [6]
    W. Fleming - R. Rishel,An integral formula for total gradient variation, Arch. Math.,11 (1960).Google Scholar
  7. [7]
    M. Miranda,Distribuzioni aventi derivate misure, Ann. Scuola Norm. Sup. Pisa,18 (1964).Google Scholar
  8. [8]
    M. Miranda,Sul minimo dell'integrale del gradiente di una funzione, Ann. Scuola Norm. Sup. Pisa,19 (1965).Google Scholar
  9. [9]
    M. Miranda,Disuguaglianze di Sobolev sulle ipersuperfici minimali, Rend. Sem. Mat. Univ. Padova,38 (1967).Google Scholar
  10. [10]
    G. Rosen,Minimum value for c in the Sobolev inequality, SIAM J. Appl. Math.,21 (1971).Google Scholar
  11. [11]
    S. L. Sobolev,On a theorem of functional analysis (in russian), Mat. Sb.,4 (1938).Google Scholar
  12. [12]
    S. L. Sobolev,Applications of functional analysis in mathematical physics, Amer. Math. Soc. (1963).Google Scholar
  13. [13]
    L. C. Young,Partial area, Rivista Mat. Univ. Parma,10 (1959).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • Giorgio Talenti
    • 1
  1. 1.Firenze

Personalised recommendations