Advertisement

Annali di Matematica Pura ed Applicata

, Volume 53, Issue 1, pp 63–87 | Cite as

On the decomposition and integral representation of continuous linear operators

  • Alexandra Ionescu Tulcea
  • Cassius Ionescu Tulcea
Article

Keywords

Linear Operator Integral Representation Continuous Linear Continuous Linear Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    R. G. Bartle N. Dunford andJ. Schwartz,Weak compactness and vector measures, «Canadian J. Math.», 7, 289–305 (1955).MathSciNetGoogle Scholar
  2. [2]
    S. Bochner andA. E. Taylor,Linear functionals on certain spaces of abstractly-valued functions, «Ann. of Math.», 39, 913–944 (1938).CrossRefMathSciNetGoogle Scholar
  3. [3]
    N. Bourbaki,Espaces vectoriels topologiques, Chap. I–V, Paris (1953–1955.Google Scholar
  4. [4]
    -- --,Intégration, Chap. I–V, Paris (1952–1957).Google Scholar
  5. [5]
    J. L. B. Cooper,Coordinated linear spaces, «Proc. London Math. Soc.», 3, 305–327 (1953).MATHMathSciNetGoogle Scholar
  6. [6]
    J. Dieudonné,Sur le théorème de Lebesgue-Nikodym (III), «Annales Univ. Grenoble», 23, 25–53 (1947–1948).Google Scholar
  7. [7]
    ——,Sur le théorème de Lebesgue-Nikodym (IV), «J. Indian Math. Soc.», 15, 77–86 (1951).MATHMathSciNetGoogle Scholar
  8. [8]
    ——,Sur le théorème de Lebesgue-Nikodym (V). «Canadian J Math.», 3, 129–139 (1951).MATHMathSciNetGoogle Scholar
  9. [9]
    N. Dinculeanu,Sur la représentation intégrale de certaines opérations linéaires, «Comptes Rendus», 245, 1203–1205 (1957).MATHMathSciNetGoogle Scholar
  10. [10]
    ——,Espaces d'Orlicz de champs de vecteurs III, «Studia Math.», 17, 285–293 (1958).MATHMathSciNetGoogle Scholar
  11. [11]
    ——,Sur la représentation intégrale des certaines opérations linéaires II, «Compositio Math.», 14, 1–22 (1959).MathSciNetGoogle Scholar
  12. [12]
    ——,Sur la représentation intégrale des certaines opérations linéaires III, «Proc. Amer. Math. Soc.», 10, 59–68 (1959).CrossRefMathSciNetGoogle Scholar
  13. [13]
    N. Dinculeanu etC. Foias,Mesures vectorielles et opérations linéaires sur L Ep, «Comptes Rendus, 248, 1759–1762 (1959).MathSciNetGoogle Scholar
  14. [14]
    J. Dixmier,Sur certains espaces considérés par M. H Stone, Summa Brasiliensis Mathematicae 2, 151–182 (1951).MATHMathSciNetGoogle Scholar
  15. [15]
    -- --,Les algèbres d'opérateurs dans l'espace hilbertien, Paris (1957).Google Scholar
  16. [16]
    N. Dunford,Uniformity in linear spaces, «Trans. Amer. Math. Soc.», 44, 305–356 (1938).CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    N. Dunford andJ. B. Pettis,Linear operations on summable functions, «Trans. Amer. Math. Soc.», 47, 323–392 (1940).CrossRefMathSciNetGoogle Scholar
  18. [18]
    N. Dunford andJ. T. Schwartz,Linear operators, Part. I, New York, (1958).Google Scholar
  19. [19]
    H. W. Ellis andI. Halperin,Function spaces determined by a levelling length function, «Canadian J. Math.», 5, 576–592 (1953).MathSciNetGoogle Scholar
  20. [20]
    R. Fortet etE. Mourier,Résultats complémentaires sur les éléments aléatoires dans un espace de Banach, »Bull. Sc. Math.» 78, 14–30 (1954).MathSciNetGoogle Scholar
  21. [21]
    R. E. Fullerton,The representation of linear operators from L p to L, «Proc. Amer. Math. Soc.», 5, 689–696 (1954).CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    ——,An inequality for linear operators between L p spaces, «Proc. Amer. Math. Soc.», 6, 186–190 (1955).CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    I. Gelfand,Abstrakte Funktionen und lineare Operatoren, «Math. Sbornik», 4 (46), 235–286 (1938).MATHGoogle Scholar
  24. [24]
    R. Godement,Théorie générale des sommes continues d'espaces de Banach, «Comptes Rendus», 228, 1321–1323 (1949).MATHMathSciNetGoogle Scholar
  25. [25]
    ——,Sur la théorie des représentations unitaires, «Ann. Math.», 53, 68–124 (1951).CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    A. Grothendieck,Produits tensoriels topologiques et espaces nucléaires, «Memoirs Amer. Math. Soc.», no. 16 (1955).Google Scholar
  27. [27]
    Einar Hille andRalph S. Phillips,Functional analysis and semi-groups, Providence (1957).Google Scholar
  28. [28]
    C. Ionescu Tulcea,Deux théorèmes concernant certains espaces de champs de vecteurs, «Bull. Sc. Math.», 79. 106–111 (1955).MATHMathSciNetGoogle Scholar
  29. [29]
    G. C. Lorentz andD. G. Wertheim,Representation of linear functionals on Köthe spaces, «Canadian J. Math.» 5, 568–575 (1953).MathSciNetGoogle Scholar
  30. [30]
    E. Mourier,Eléments aléatoires prenant leurs valeurs dans un espace de Banach, «Thèse», Paris (1952).Google Scholar
  31. [31]
    John von Neumann.On rings of operators. Reduction theory, «Ann. of Math.», 50, 401–485 (1949).CrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    R. S. Philljps,On linear transformations, «Trans Amer. Math. Soc.», 48, 516–541 (1940).CrossRefMathSciNetGoogle Scholar
  33. [33]
    B. J. Pettis,On integration in vector spaces, «Trans. Amer. Math. Soc.» 44, 277–304 (1938).CrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    (Added in proof)N. Bourbaki,Intégration, Chap. VI, Paris (1960).Google Scholar
  35. [35]
    (Added in proof)I. Singer,Sur une classe d'applications linéaires continues des espaces, L Fp (1≤p<+∞), «Ann. Sci. École Norm. Sup.», 77, 235–256 (1960).MATHGoogle Scholar

Copyright information

© Swets & Zeitlinger B. V. 1961

Authors and Affiliations

  • Alexandra Ionescu Tulcea
    • 1
  • Cassius Ionescu Tulcea
    • 1
  1. 1.New HavenU.S.A.

Personalised recommendations