Advertisement

Derivatives and jacobians

  • G. Baley Price
Article
  • 27 Downloads

Summary

This paper develops a theory of Jacobians and partial derivatives based on definitions analogous to that of the ordinary derivative. The definitions lead to well known classes of differentiable functions. The development employs important identities in the theory of determinants.

Keywords

Partial Derivative Differentiable Function Ordinary Derivative Important Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. [1]
    Stefan Banach,Sur une classe de fonctions d'ensemble. « Fundamenta Mathematicae », vol. 6 (1924) pp. 170–188.MATHGoogle Scholar
  2. [2]
    Stefan Banach,Sur les lignes rectifiables et les surfaces dont l'aire est finie. « Fundamenta Mathematicae », vol. 7 (1925) pp. 225–236.MATHGoogle Scholar
  3. [3]
    J. Bertrand,Mémoire sur le déterminant d'un système de fonctions. « Liouville's) Journal de Mathématique Pures et Appliquées », vol. 16 (1851) pp. 212–227.Google Scholar
  4. [4]
    J. Bertrand,Traité de Calcul Différentiel et de Calcul Intégral. Paris vol. 1, 1864; vol. 2, 1870.Google Scholar
  5. [5]
    Maxime Bôcher, Kowalewski's determinants (a review of14 in this bibliography). « Bulletin of the American Mathematical Society », vol. 17 (1910–1911) pp. 120–140.CrossRefMathSciNetGoogle Scholar
  6. [6]
    J. C. Burkill,The expression of area as an integral. « Proceedings of the London Mathematical Society (2) », vol. 22 (1924) pp. 311–336.Google Scholar
  7. [7]
    Constantin Carathéodory,Vorlesungen über reelle Funktionen. Teubner, Leipzig und Berlin, 1918.MATHGoogle Scholar
  8. [8]
    A. Cauchy,Théorie de la propagation des ondes à la surface d'une fluide pesant d'une profondeur indéfinie. « Mémoire présentés par divers savants à l'Académie royale des Sciences de l'Institut de France », vol. 1 (1827) pp. 1–312. Oeuvres Complètes D'Augustin Cauchy (Ire série) vol. 1, pp. 5–318, Paris, 1882.MathSciNetGoogle Scholar
  9. [9]
    W. F. Donkin,On a class of differential equations, including those which occur in dynamical problems. « Part I, Philosophical Transactions of the Royal Society of London », vol. 144 (1854) pp. 71–113.Google Scholar
  10. [10]
    Philip Franklin,Osculasting curves and surfaces. « Transactions of the American Mathematical Society », vol. 28 (1926) pp. 400–416.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    C. G. J. Jacobi,De binis quibuslibet functionibus homogenesis secundi ordinis per substitutiones lineares in alias binas transformandis, quae solis quadratis variabilium constant; una cum variis theorematis de transformatione et determinatione integralium multiplicium. « (Crelle's) Journal für die reine und angewandte Mathematik », vol. 12 (1834) pp. 1–69. Gesammelte Werke vol. 3, pp. 191–268, Berlin, 1884.MATHGoogle Scholar
  12. [12]
    C. G. J. Jacobi,De determinantibus functionalibus. « (Crelle's) Journal für die reine und angewandte Mathematik », vol, 22 (1841) pp. 319–359. Gesammelte werke vol. 3, pp. 393–438, Berlin, 1884. Translation by P. Stackel in Ostwald's Klassikern der exakten (Wiss. (No. 78): Ueber die Functionaldeterminanten, Leipzig, 1896.MATHCrossRefGoogle Scholar
  13. [13]
    Wilfred Kaplan,A problem of geometry suggested by G. B. Price. « American Mathematical Monthly » vol. 58 (1951) p. 667.Google Scholar
  14. [14]
    Gerhard W. H. Kowalewski,Einführung in die Determinantentheorie einschliesslich der unendlichen und der Fredholmschen Determinanten, Veit & Comp., Leipzig 1909.Google Scholar
  15. [15]
    H. Laurent,Traité d'Analyse. Gauthier-Villars, Paris, vol. 1, 1885.MATHGoogle Scholar
  16. [16]
    Warren Keith Moore,The Characterizations of a Class of Transformations and of a Class of Differentiable Functions. Thesis, The University of Kansas, 1951.Google Scholar
  17. [17]
    Thomas Muir,The Theory of Determinants in the Historical Order of Development. Macmillam and Co., Ltd., London. Vol. I, 2nd edition (1906); vol. II (1911); vol. III (1920); vol. IV (1923).MATHGoogle Scholar
  18. [18]
    Thomas Muir,The theory of Jacobians, from 1885to 1919. « Proceedings of the Royal Society of Edinburgh », vol. 48 (1927–1928) pp. 37–54.Google Scholar
  19. [19]
    Thomas Muir (revised byWilliam H. Metzler),A Treatise on the Theory of Determinants. Longmans, Green and Co. New York, 1933.Google Scholar
  20. [20]
    G. Peano,Calcolo Differenziale, e Principii di Calcolo Integrale. (Per Angelo Gennocchi, pubblicato con aggiunte dal Giuseppe Peano), Torino, 1884.Google Scholar
  21. [21]
    G. Peano,Su d'una proposizione riferentesi ai determinanti jacobiani, « Giornale di Mat. », vol. 27 (1889) pp. 226–228.MATHGoogle Scholar
  22. [22]
    G. B. Price,Some identities in the theory of determinants. « American Mathematical Monthly », vol. 54 (1947) pp. 75–90.CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    Hans Rademacher,Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, « Mathematische Annalen », vol 79 (1919) pp. 340–359; vol. 81 (1920) pp. 52–63.CrossRefMathSciNetGoogle Scholar
  24. [24]
    J. J. Sylvester,On a theory of the syzygetic relations of two rational integral functions. « Philosophical Transactions of the Royal Society of London », vol. 143 (1853), Part III, pp. 407–548. Mathematical Papers vol. I, pp. 429–586, Cambridge University Press, 1904.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1962

Authors and Affiliations

  • G. Baley Price
    • 1
  1. 1.LawrenceU.S.A

Personalised recommendations