Annali di Matematica Pura ed Applicata

, Volume 74, Issue 1, pp 203–226 | Cite as

On the harmonic summability of Fourier series

  • P. L. Sharma
  • V. Venu Gopal Rao


The authors have defined the product of two summability methods and have applied it to Fourier series. The criterion are analogous to the known criterion Convergence of Fourier series.


Fourier Series Criterion Convergence Summability Method Harmonic Summability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. J. Gergen,Convergence and summability criteria for Fourier series, Quart. Jour. Math. vol. 1 (1930) 252–275.MATHGoogle Scholar
  2. [2]
    G. H. Hardy, 4.2,Theorem Divergent series, Oxford, (1949).Google Scholar
  3. [3]
    G. H. HardyJ. E. Littlewood,Sur la series de Fourier d'une fonction a carre sommable, comptes rendus, 156 (1913), 1307–1309.MATHGoogle Scholar
  4. [4]
    G. H. HardyW. W. Rogosinski,Notes on Fourier series IVsummability (R 2), Proc. Cambridge Philos. Soc. Vol. 43, (1947).Google Scholar
  5. [5]
    E. HilleJ. D. Tamarkin,On the summability of Fourier series, (1) Trans. Amer. Math. Soc. 34 (1932), 757–83.CrossRefMathSciNetGoogle Scholar
  6. [6]
    K. S. K. Iyengar,A Tauberian theorem and its application to convergence of Fourier series, Proc. Indian Acad, Sei. Sec A 18 A (1943) 81–87.MathSciNetGoogle Scholar
  7. [7]
    K. S. K. Iyengar,New convergence and summability tests of Fourier series, Proc. Indian Acad. Sei. Sec A 18 A (1943) 113–120.MathSciNetGoogle Scholar
  8. [8]
    S. Izumi,Notes on Fourier Analysis (XVI), Tohoku Math. Jour. (1949) 144–166.Google Scholar
  9. [9]
    S. Izumi,Some trigonometrical series VIII, Tohoku Math. Jour. (1953) 296–301.Google Scholar
  10. [10]
    H. Lebesgue,Recherches sur la convergence des series de Fourier, Math. Annalen, 61 (1903) 251–80.CrossRefMathSciNetGoogle Scholar
  11. [11]
    N. E. Norlund,Sur une application des fonctions permutables, Lunds University Arskift (2), 16 (1920) No. 3, 1–3.Google Scholar
  12. [12]
    O. P. Rai,On the harmonic summability of Fourier series, Ph. D. Thesis, University Saugar, Sagar.Google Scholar
  13. [13]
    C. T. Rajagopal,On the Norlund summability of Fourier series, Proc. Cambridge Philos. Soc. 59 (1963) 47–53.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Riesz,Sur l'equivalence de certaines m'ethods de sommation, Proc. London Math. Soc. 2 (1924) 22, 412–19.MATHGoogle Scholar
  15. [15]
    B. N. Sahney,On the harmonic summability of Fourier series, Bull. Calcutta Math. Soc. 54 (1962).Google Scholar
  16. [16]
    P. L. Sharma,Harmonic summability of double Fourier series, Proc. Amer. Math. Soc. vol. 9 (1958), 979–986.CrossRefMathSciNetGoogle Scholar
  17. [17]
    P. L. Sharma,On the Harmonic summability of double Fourier series, Ann. Mat. Pura Appl. (4) 56 (1961) 159–175.MATHMathSciNetGoogle Scholar
  18. [18]
    G. Sunouchi,Convergence criteria for Fourier series, Tohoku Math. Jour. 4 (1952), 187–193.MATHMathSciNetGoogle Scholar
  19. [19]
    J. A. Siddiqui,On the harmonic summability of Fourier series, Proc. Indian Acad. Sei, Sec A, 28 (1943) 527–531.Google Scholar
  20. [20]
    E. C. Titchmarsh,Theory of functions, Oxford 440 (1949)Google Scholar
  21. [21]
    O. P. Varshney,On the summability of Fourier series and its conjugate series, Ph. D. Thesis. University of Saugar, Sagar.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1966

Authors and Affiliations

  • P. L. Sharma
    • 1
  • V. Venu Gopal Rao
    • 1
  1. 1.SaugarIndia

Personalised recommendations