Advertisement

Annali di Matematica Pura ed Applicata

, Volume 86, Issue 1, pp 313–324 | Cite as

A strong form of spectral resolution

  • John J. Benedetto
Article

Summary

We consider pseudo-measures T on totally disconnected sets E as finitely additive set functions whit the usual variation norm ‖ ‖v. If\(E \subseteq R/2\prod Z\), m(E)=0, T=f′, f ∈L1, and ‖T‖v<∞ then T is a measure. For arbitrary locally compact abelian groups we give conditions that T be a measure in terms of the pseudo-measure norm; this result is known for R/Z.

Keywords

Abelian Group Variation Norm Strong Form Compact Abelian Group Spectral Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    J. Benedetto,Psendo-Measures and harmonic synthesis, Lecture Notes No. 5, Dept. of Math., U. of Maryland, 1968.Google Scholar
  2. [2]
    J. W. S. Cassels andA. Fröhlich (editors),Algebraic number theory, Thompson Book Co., Washington, D.C., 1967.Google Scholar
  3. [3]
    P. Malliavin,Sur les ensembles ne portant pas de pseudo-measures, C. R. Acad. Sc. Paris, 267 (1968) 813–815.MATHMathSciNetGoogle Scholar
  4. [4]
    W. Rudin,Fourier analysis on groups, J. Wiley and Sons, New York, 1962.Google Scholar
  5. [5]
    N. Varopoulos,Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sc. Paris, 260 (1965) 3831–3834.MATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • John J. Benedetto
    • 1
  1. 1.U.S.A.

Personalised recommendations