Advertisement

Annali di Matematica Pura ed Applicata

, Volume 86, Issue 1, pp 99–114 | Cite as

Determining bounds for the first conjugate point

  • Walter Leighton
  • William Oo Kian Ke
Article

Summary

The purpose of this paper is to provide relatively simple methods for the determination of useful upper and lower bounds for the first zero greater than a of solutions of systems y″+p(x)y=0, y(a)=0, where p(x) is positive and continuous on an interval [a, b] and is either convex or concave there. On occasion, p(x) is required to be of class C′ or of class C″.

Keywords

Lower Bound Conjugate Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. M. Fink, The functional\(T\int\limits_0^T R \) and the zeroes of a second order linear differential equation, Jour. de Math. pures et appl., 46 (1967), pp. 1–9.MATHMathSciNetGoogle Scholar
  2. [2]
    —— ——,On the zeroes of y″+py= 0with linear, convex and concave p, Bour. de Math. pures et appl., 46 (1967), pp. 1–10.MATHMathSciNetGoogle Scholar
  3. [3]
    A S. Galbraith,On the zeros of solutions of ordinary differential equations of second order, Proc. Amer. Math. Soc., 17 (1966), pp. 333–337.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    Walter Leigthon,On the zeros of solutions of a second-order linear differential equation, Jour. de Math. pures et appl., 44 (1965), pp. 297–310.Google Scholar
  5. [5]
    —— ——,Some elementary Sturm Theory, Jour. of Diff-Equations, 4 (1968), pp. 187–193.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    -- --,Bounds for conjugate points, to appear in Journal für die reine und angewandte Mathematik.Google Scholar
  7. [7]
    —— ——,The conjugacy function, Proc. Amer. Math. Soc., vol. 24 (1970), pp. 870–873.CrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Samanich Skidmore andWalter Leighton,On the oscillation of solutions of a second-order linear differential equation, Rend. Mat. di Palermo, Serie II, 14 (1965), pp. 1–8.Google Scholar
  9. [9]
    G. N. Watson,A treatise on the theory of Bessel functions, Cambridge Univ. Press, 2nd edit., 1966.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • Walter Leighton
    • 1
  • William Oo Kian Ke
    • 1
  1. 1.Columbia

Personalised recommendations