Advertisement

Annali di Matematica Pura ed Applicata

, Volume 86, Issue 1, pp 1–13 | Cite as

Applied functorial semantics,1

  • F. E. J. Linton
Article

Summary

In questo lavoro presentiamo due teoremi di rappresentazione funtoriale, l'uno(2.1) contravariante, l'altro(3.1) covariante. Questi due teoremi risultono, ambe due, d'una forma primitiva(1.7) del teorema fundamentale di caratterizzazione di Jon Beck nella semantica funtoriale.

Si ritrova, come caso speciale del primo, la dualità di Stone trà gli anneli di Boole e gli spazii compatti0-dimensionali; di modo analogo, si ritrova dall'altro un teorema di tipo « risoluzione spettrale » per una classa di spazii vettoriali reticolati, annunciata senza dimostrazione in un articolo anteriore[11] dell'autore.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    J. Beck,Untitled manuscript, Cornell, 1966.Google Scholar
  2. [2]
    J. Bénabou,Critères de représentabilité des foncteurs, C. R. Acad. Sci. Paris260 (1965), 752–755.MATHMathSciNetGoogle Scholar
  3. [3]
    S. Eilenberg andG. M. Kelly,Closed categories, Proc. Conf. Categ. Alg. (La Jolla, 1965), Springer, Berlin, 1966, 421–562.Google Scholar
  4. [4]
    P. J. Freyd,Abelian Categories, Harper & Row, New York, 1964.MATHGoogle Scholar
  5. [5]
    J. R. Isbell,Epimorphisms and dominions, Proc. Conf. Categ. Alg. (La Jolla, 1965), Springer, Berlin, 1966, 232–246.Google Scholar
  6. [6]
    F. W. Lawvere,Functorial Semantics of Algebraic Theories, Dissertation, Columbia, 1963.Google Scholar
  7. [7]
    —— ——,Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. 50 (1963), 869–872.MATHMathSciNetGoogle Scholar
  8. [8]
    F. E. J. Linton,Autonomous categories and duality of functors, J. Algebra 2 (1965), 315–349.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    — ——,Injective boolean σ-algebras, Arch. Math. 17 (1966), 383–387.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    —— ——,Some aspects of equational categories, Proc. Conf. Categ. Alg. (La Jolla, 1965), Springer, Berlin, 1966, 84–94.Google Scholar
  11. [11]
    —— ——,Functorial measure theory, Proc. Conf. Funct. Analysis (Irvine, 1966), Thompson, Washington, D.C., 1968, 36–49.Google Scholar
  12. [12]
    S. Mac Lane,Categorical Algebra, Bull. A.M.S. 71 (1965), 40–106.MathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Manes,A Triple Miscellany, Dissertation, Wesleyan, 1967.Google Scholar
  14. [14]
    B. Mitchell,The full embedding theorem, Amer. J. Math. 86 (1964), 619–637.MATHMathSciNetGoogle Scholar
  15. [15]
    —— ——,Theory of Categories, Academic Press, New York, 1965.MATHGoogle Scholar
  16. [16]
    A. Ramsay,A theorem on two commuting observables, J. Math. Mech. 15 (1966), 227–234.MATHMathSciNetGoogle Scholar
  17. [17]
    J. Słomiński,The theory of abstract algebras with infinitary operations, Rozprawy Mat. 18 (1959), 1–67.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • F. E. J. Linton
    • 1
  1. 1.MiddletownU.S.A.

Personalised recommendations