Annali di Matematica Pura ed Applicata

, Volume 52, Issue 1, pp 331–347 | Cite as

The generalised jump of a function and Gibbs phenomenon

  • K. C. Shrivastava
Article
  • 21 Downloads

Summary

By studying certain transforms and applying his theorem on « the generalised jump of a function » author proves certain theorems concerning jump of a function and Gibbs phenomenon.

Keywords

Gibbs Phenomenon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chow, H. C.,On a theorem of O. Szasz, « Journal Lond. Math. Soc. », 16 (1941), pp. 23–27.MATHGoogle Scholar
  2. [2]
    Cooke, R. G.,Infinite Matrices and Sequence Spaces, Macmillan Ltd.Google Scholar
  3. [3]
    Kinukama Masakuti,On the Integro Jump of a Function determined by its Fourier Coefficients, « Proc. Jap. Academy », 31 (1955), 45–48.CrossRefGoogle Scholar
  4. [4]
    Minakshi Sunderam S.,A note on the Theory of Fourier Series, « Proc. Nat. Inst. Sci. India », 10 (1944), pp. 205–215.MathSciNetGoogle Scholar
  5. [5]
    Shrivastava, K. C.,On the Determination of the Jump of a Function by its Fourier Coefficients, « Tohoku Mathematical Journal », 12 (1960), pp. 120–129.MATHMathSciNetGoogle Scholar
  6. [6]
    Sulaxana Kumari,Determination of the Jump of a Function by its Fourier Series, « Proc. Nat. Inst. Sci. India », 24 (1958). 204–216.MATHMathSciNetGoogle Scholar
  7. [7]
    Szasz Ottò,On the Generalised Jump of a Function and Gibbs phenomenon, « Duke Math. Journ. », 11 (1944), pp. 323–333.Google Scholar
  8. [8]
    Zygmund, A.,Trigonometric Series, Warsaw (1950).Google Scholar

Copyright information

© Nicola Zanichelli Editore 1960

Authors and Affiliations

  • K. C. Shrivastava
    • 1
  1. 1.Un. SaugorIndia

Personalised recommendations