Advertisement

Annali di Matematica Pura ed Applicata

, Volume 52, Issue 1, pp 331–347 | Cite as

The generalised jump of a function and Gibbs phenomenon

  • K. C. Shrivastava
Article
  • 21 Downloads

Summary

By studying certain transforms and applying his theorem on « the generalised jump of a function » author proves certain theorems concerning jump of a function and Gibbs phenomenon.

Keywords

Gibbs Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chow, H. C.,On a theorem of O. Szasz, « Journal Lond. Math. Soc. », 16 (1941), pp. 23–27.MATHGoogle Scholar
  2. [2]
    Cooke, R. G.,Infinite Matrices and Sequence Spaces, Macmillan Ltd.Google Scholar
  3. [3]
    Kinukama Masakuti,On the Integro Jump of a Function determined by its Fourier Coefficients, « Proc. Jap. Academy », 31 (1955), 45–48.CrossRefGoogle Scholar
  4. [4]
    Minakshi Sunderam S.,A note on the Theory of Fourier Series, « Proc. Nat. Inst. Sci. India », 10 (1944), pp. 205–215.MathSciNetGoogle Scholar
  5. [5]
    Shrivastava, K. C.,On the Determination of the Jump of a Function by its Fourier Coefficients, « Tohoku Mathematical Journal », 12 (1960), pp. 120–129.MATHMathSciNetGoogle Scholar
  6. [6]
    Sulaxana Kumari,Determination of the Jump of a Function by its Fourier Series, « Proc. Nat. Inst. Sci. India », 24 (1958). 204–216.MATHMathSciNetGoogle Scholar
  7. [7]
    Szasz Ottò,On the Generalised Jump of a Function and Gibbs phenomenon, « Duke Math. Journ. », 11 (1944), pp. 323–333.Google Scholar
  8. [8]
    Zygmund, A.,Trigonometric Series, Warsaw (1950).Google Scholar

Copyright information

© Nicola Zanichelli Editore 1960

Authors and Affiliations

  • K. C. Shrivastava
    • 1
  1. 1.Un. SaugorIndia

Personalised recommendations