Advertisement

Annali di Matematica Pura ed Applicata

, Volume 27, Issue 1, pp 115–134 | Cite as

Some arithmetical questions in the theory of the base

  • Leonard Roth
Article

Sunto.

Vengon studiate, dal punto di vista aritmetico, alcune varietà algebriche possedenti trasformazioni birazionali in sè

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. (1).
    « Proc. Camb. Phil. Soc. », 41, (1946), p. 187; « Rev. Univ. Tucuman », 5, (1946), p. 7. It is the latter work which is quoted in the sequel.Google Scholar
  2. (2).
    Arithmetical methods are, it seems, incapable of dealing with the problem in all its generality; thus they cannot in general reveal the existence of self-collineations, or continuous transformations, or transformations possessing certain kinds of exceptional elements (see § 18).Google Scholar
  3. (3).
    « Rend. Palermo », 30, (1910), p. 265. See alsoF. R. Sharpe andV. Snyder, « Trans. Amer. Math. Soc. », 1914–15; andT. G. Room, « Proc. Roy. Soc. » A 193, (1918), p. 25.Google Scholar
  4. (4).
    L. S. Goddard, « Proc. Camb. Phil. Soc. », 44, (1948), p. 43.Google Scholar
  5. (5).
    « Rend. Lincei », (5), 15 (1906)2, p. 665.Google Scholar
  6. (6).
    « Memorie Accad. d'Italia », 8, (1937), p. 23.Google Scholar
  7. (7).
    Scritti matematici offerti aL. Berzolari, (1936), p. 345.Google Scholar
  8. (8).
    Jessop,Quartic Surfaces, (Cambridge, 1916), Ch. IX.Google Scholar
  9. (9).
    SeeEnriques-Chisini,Teoria geometrica delle equazioni, Il, p. 191.Google Scholar
  10. (10).
    F. Severi, « Memorie Acc. Torino, (2), 52, (1903), p. 61 (§ 29).MATHGoogle Scholar
  11. (11).
    J. A. Todd, « Proc. Cambridge Phil. Soc. », 26, (1930), p. 323.MATHCrossRefGoogle Scholar
  12. (12).
    The correspondence between a special type of quintic surface and Jacobian surface of quadrics has been studied by the writer: « Proc. London Math. Soc. », (2), 30, (1930), p. 425.Google Scholar
  13. (13).
    E. Ciani, « Rend. Palermo », 28, (1909), p. 217.MATHCrossRefGoogle Scholar
  14. (14).
    This primal has been studied by the writer: see « Proc. London Math. Soc. », (2) 30, (1929), p. 118.Google Scholar

Copyright information

© Swets & Zeitlinger B.V. 1948

Authors and Affiliations

  • Leonard Roth
    • 1
  1. 1.London

Personalised recommendations