Annali di Matematica Pura ed Applicata

, Volume 54, Issue 1, pp 231–254 | Cite as

A topological proof of the bott periodicity theorems

  • E. Dyer
  • R. Lashof
Article

Summary

A proof is given of theBott periodicity theorems using only well known techniques of algebrdbc topology.

Keywords

Periodicity Theorem Bott Periodicity Topological Proof Bott Periodicity Theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Araki andKudo,Topology of H n-spaces and H-squaring operations, « Memoirs Fac. of Science, Kyusyu Univ.. », Ser. A, (10), 1956. 85–120.Google Scholar
  2. [2]
    Borel,Cohomologie des espaces fibres principaux, « Ann. of Math. » (57), 1953, pp. 115–207.Google Scholar
  3. [3]
    -- --,La cohomologie mod 2 de certains espaces homogenes, « Commentarii Math. Helvetica (27), 1953, pp. 165–197.Google Scholar
  4. [4]
    Rott R.,The stable homotopy of the classical groups, « Ann. of Math. » (70) 1959, pp. 313–337.Google Scholar
  5. [5]
    -- --,Théorémes de Périodicité, Bull. Soc. Math. France » (87), 1959, pp. 293–310.Google Scholar
  6. [6]
    -- --,The space of loops on a Lie group, « Mich. Mat. J. » (5), 1958, pp. 35–61.Google Scholar
  7. [7]
    Séminaire Henri Cartan de l'Ecole Normale Superieure, 1959–60.Google Scholar
  8. [8]
    Dyer, E. andLashof R.,Homology of Iterated loop spaces (to appear) « Amer. J. of Math. ».Google Scholar
  9. [9]
    -- --,Homology of principal bundles (to appear) Symposium on Differential Geometry, Tucson, « Am. Math. Soc. ».Google Scholar
  10. [10]
    Hu, S.,Homotopy Theory, Academic Press, New York, 1959.Google Scholar
  11. [11]
    Milnor,Characteristic Classes (Mimeographed), Princeton (1957).Google Scholar

Copyright information

© Nicola Zanichelli Editore 1961

Authors and Affiliations

  • E. Dyer
    • 1
  • R. Lashof
    • 1
  1. 1.ChicagoU.S.A.

Personalised recommendations