Annali di Matematica Pura ed Applicata

, Volume 106, Issue 1, pp 329–351 | Cite as

Enumeration of weighted rectangular arrays

  • Margaret J. Hodel
Article
  • 17 Downloads

Summary

Let Ip(n, k; q1, q2, ..., qp)=Ip(n, k) be defined by
$$I_v (n,k) = \sum {\prod\limits_{i = 1}^v {q_i^{j\mathop = \limits^{\mathop \sum \limits^n a_{ij} } 1} } }$$
, where the summation is over all p-line arrays of positive integers {aij:1≤i≤p, 1≤j≤n} subject to the following conditions:
$$\begin{array}{*{20}c} {\max \left\{ {a_{ij} :1 \leqslant i \leqslant p} \right\} \leqslant \min \left\{ {a_{i,j + 1} :1 \leqslant i \leqslant p} \right\}, 1 \leqslant j \leqslant n - 1,} \\ {\max \left\{ {a_{ij} :1 \leqslant i \leqslant p} \right\} \leqslant j, 1 \leqslant j \leqslant n,} \\ {a_{i + 1,j} \leqslant a_{ij} , 1 \leqslant i \leqslant p - 1, 1 \leqslant j \leqslant n,} \\ \end{array} $$
and
$$a_{1j} = a_{2j} = ... = a_{pj} for k values of j, 1 \leqslant j \leqslant n$$
. Assuming\(\prod\limits_{i = 1}^p {q_i = 1}\), formulas for Iv(n, k) and another closely related enumerant are determined in this paper. These two functions generalize enumerants which Carlitz has obtained.

Keywords

Positive Integer Rectangular Array Related Enumerant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Carlitz,q-Bernoulli and Eulerian numbers, Transactions of the American Mathematical Society,76 (1954), pp. 332–350.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    L. Carlitz,Enumeration of rectangular arrays by length and coincidences, Annali di Matematica pura ed applicata, vol. 99 (1974), pp. 155–182.MATHGoogle Scholar
  3. [3]
    L. Carlitz,Enumeration of two-line arrays, The Fibonacci Quarterly,2 (1973), pp. 113–130.Google Scholar
  4. [4]
    L. Carlitz,Sequences, paths, ballot numbers, The Fibonacci Quarterly,10 (1972), pp. 531–550.MATHMathSciNetGoogle Scholar
  5. [5]
    M. J. Hodel,Enumeration of weighted p-line arrays, Pacific Journal of Mathematics, to appear.Google Scholar
  6. [6]
    P. A. MacMahon,Combinatorial Analysis, vol. 1, Cambridge, 1915.Google Scholar
  7. [7]
    G. Pólya -G. Szegö,Aufgabon und Lehrsätze aus der Analysis, Springer, Berlin, vol. 1 (1925).Google Scholar
  8. [8]
    J. Riordan,Combinatorial Identities, Wiley, New York, 1968.Google Scholar
  9. [9]
    D. P. Roselle,Generalized Eulerian functions and a problem in partitions, Duke Mathematical Journal,33 (1966), pp. 293–304.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • Margaret J. Hodel
    • 1
  1. 1.Durham

Personalised recommendations