Annali di Matematica Pura ed Applicata

, Volume 106, Issue 1, pp 187–203 | Cite as

Alcune condizioni sufficienti per l’esistenza e l’unicità della soluzione di una disequazione variazionale non coerciva

  • Gianfranco Bottaro
Article

Summary

I give some hypothesis for existence and uniqueness of the solution of a variational inequality in non coercive form.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    G. F. Bottaro,Problema al contorno misto per equazioni ellittiche di tipo variazionale su insiemi non limitati, Rend. Accad. Naz. Lincei,55 (1973).Google Scholar
  2. [2]
    G. F. Bottaro -M. E. Marina,Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati, Boll. U.M.I., (4)8 (1973), pp. 46–56.MathSciNetGoogle Scholar
  3. [3]
    H. Brëzis -G. Stampacchia,Sur la régularité de la solution d’inequations elliptiques, Bull. Sur. Math. Franc.,96 (1968), pp. 153–180.Google Scholar
  4. [4]
    F. Browder,On the spectral theory of elliptic differential operator, I, Math. Annalen,142 (1961), pp. 22–130.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    M. Chicco,Principio di massimo forte per sottosoluzioni di equazioni ellittiche di tipo variazionale, Boll. U.M.I., (3)22 (1967), pp. 368–372.MATHMathSciNetGoogle Scholar
  6. [6]
    M. Chicco,On a priori inequality concerning elliptic second order partial differential equations of variational type, Matematiche (Catania),26 (1971), pp. 173–182.MathSciNetGoogle Scholar
  7. [7]
    M. Chicco,Confronto fra due modi di definire le diseguaglianze per le funzioni di H 1 (Θ), Boll. U.M.I., (4)4 (1971), pp. 668–676.MATHMathSciNetGoogle Scholar
  8. [8]
    N. Dunford -J. Schwartz,Linear operator, vol. I, Interscience, New York, 1958.Google Scholar
  9. [9]
    L. Lions,Quelques méthodes de résolution des problvmes aux limites non linéaires, Dunod, Paris, 1969.Google Scholar
  10. [10]
    L. Lions -G. Stampacchia,Variational inequalities, Comm. Pure Applied Math.,20 (1967), pp. 493–519.MathSciNetGoogle Scholar
  11. [11]
    U. Mosco,Convergence of Convex Sets and of Solutions of Variational Inequalities Advances in Mathematics,3, no. 4 (1969), pp. 510–585.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    V. Murthy 3-G. Stampacchia,Boundary value problems for some degenerate elliptic operator, Ann. Mat. Pura e Appl., (4)80 (1968), pp. 1–122.MathSciNetGoogle Scholar
  13. [13]
    J. Neças,Les methodes directes dans la théorie des equations elliptiques, Edition de l’Academie Tchécoslovaque des Sciences, Pragua, 1967.Google Scholar
  14. [14]
    G. Stampacchia,Equations elliptiques du second ordre à coefficients discontinuous, Séminaire de Mathématique supérieures, Université de Montreal, 4 session, été 1965, Les presses de l’Université de Montreal, 1966.Google Scholar
  15. [15]
    G. Stampacchia,Variational inequalities, N.A.T.O. School Venise (juin 1968), pp. 101–193.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • Gianfranco Bottaro
    • 1
  1. 1.Genova

Personalised recommendations