Advertisement

Geometriae Dedicata

, Volume 5, Issue 3, pp 307–320 | Cite as

Sphären Mit Wenigen Ecken

  • Peter Kleinschmidt
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Barnette, D.:Diagrams and Schlegel Diagrams, Combinatorial Structures and their Applications, New York, 1970, pp. 1–4.Google Scholar
  2. 2.
    Grünbaum, B.:Convex Polytopes, Interscience Publishers, New York, 1967.MATHGoogle Scholar
  3. 3.
    Grünbaum, B.: ‘Polytopes, Graphs and Complexes’,Bull. Am. Math. Soc. (1970), 1131–1201.Google Scholar
  4. 4.
    Grünbaum, B. und Sreedharan, V. P.: ‘An Enumeration of Simplicial 4-Polytopes with 8 Vertices’,Journ. of Comb. Theo. 2 (1967), 437–465.MATHGoogle Scholar
  5. 5.
    Hudson, J. F. P.:Piecewise Linear Topology, University of Chicago Lecture Notes, W.A. Benjamin, New York, 1969.MATHGoogle Scholar
  6. 6.
    Mani, P.: ‘Spheres with Few Vertices’,Journ. of Comb. Theo. (A) 13 (1972), 346–352.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Pachner, U.:Nichtsimpliziale Zerlegungen von PL-Mannigfaltigkeiten, Ruhr-Universität-Bochum, 1974, erscheint demnächst.Google Scholar
  8. 8.
    Shephard, G. C.: ‘Sections and Projections of Convex Polytopes’,Mathematika 19 (1972), 144–162.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Steinitz, E.: ‘Polyeder und Raumeinteilungen’,Enzykl. math. Wiss. 3 (Geometrie), Teil 3AB12, (1922), 1–139.Google Scholar

Copyright information

© D. Reidel Publishing Company 1976

Authors and Affiliations

  • Peter Kleinschmidt
    • 1
  1. 1.Mathematisches Institut der Ruhr-Universität BochumBochumBundesrepublik Deutschland

Personalised recommendations