Journal of Mathematical Sciences

, Volume 89, Issue 3, pp 1253–1260 | Cite as

P. A. Shirokov's work on the geometry of symmetric spaces

  • A. P. Shirokov
Article
  • 22 Downloads

Keywords

Symmetric Space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “The 8th International Competition for the Prize of Nicolai Ivanovich Lobachevsky (1937). Report Kazan Phys.-Math. Soc.”, Kazan Univ. Press (1939), pp. 1–262.Google Scholar
  2. 2.
    T. A. Burtseva, “Almost complex structures on some surfaces of the octave plane”, In:Tr. Geom. Sem., Vol. 21, Kazan Univ. Press (1991), pp. 41–43.Google Scholar
  3. 3.
    V. I. Vedernikov, “Symmetric spaces. Conjugate connections as a normalized connection”, In:Tr. Geom. Sem., Vol. 1, All-Union Institute for Scientific and Technical Information, Moscow (1966), pp. 63–88.Google Scholar
  4. 4.
    V. I. Vedernikov and A. S. Fedenko, “Symmetric spaces and their generalizations”, In:Itogi Nauki i Tekhn. Algebra. Topologia. Geometria, Vol. 14, All-Union Institute for Scientific and Technical Information, Moscow (1976).Google Scholar
  5. 5.
    V. I. Vedernikov and S. V. Vedernikov, “Geometry of uniform spaces generated by morphisms ofG-spaces”, In:Itogi Nauki i Tekhn. Probl. Geom., Vol. 19, All-Union Institute for Scientific and Technical Information, Moscow (1987), pp. 155–185.Google Scholar
  6. 6.
    S. V. Vedernikov, “Uniform spaces generated by the groups of automorphisms of a Lie group”, In:Itogi Nauki i Tekhn. Probl. Geom., Vol. 15, All-Union Institute for Scientific and Technical Information, Moscow (1983), pp. 165–185.Google Scholar
  7. 7.
    E. Cartan,Spaces of Affine, Projective and Conformal Connectedness [Russian translation], Kazan Univ. Press (1962).Google Scholar
  8. 8.
    E. Cartan,Theory of Spinors [Russian translation], Gos. Izd. Inostr. Lit. (State Foreign Literature press), Moscow (1947).Google Scholar
  9. 9.
    E. Cartan,Geometry of Lie Groups and Symmetric Spaces [Russian translation], Gos. Izd. Inostr. Lit. (State Foreign Literature press), Moscow (1949).Google Scholar
  10. 10.
    O. Kovalskii,Generalized Symmetric Spaces [in Russian], Mir, Moscow (1984).Google Scholar
  11. 11.
    O. Loos,Symmetric Spaces [Russian translation], Nauka, Moscow (1985).Google Scholar
  12. 12.
    A. P. Norden,Spaces with Affine Connection [in Russian], Nauka, Moscow (1976).Google Scholar
  13. 13.
    B. A. Rozenfeld, L. A. Vlasova, and T. I. Yuchtina, “Application of the inclination angle of a 2-area element in Hermitian spaces to the differential geometry of these spaces”,Izv. Vuzov. Mat., No. 7, 1–7 (1984).Google Scholar
  14. 14.
    B. A. Rozenfeld, N. V. Dushina, and I. N. Semenova, “Real 2-surfaces in double Hermitian spaces”, In:Tr. Geom. Sem., Vol. 17, Kazan Univ. Press (1986), pp. 72–79.Google Scholar
  15. 15.
    B. A. Rozenfeld, N. V. Dushina, and I. N. Semenova, “Differential geometry of real 2-surfaces in double Hermitian, Euclidean and elliptic spaces”, In:Tr. Geom. Sem., Vol. 19, Kazan Univ. Press (1989), pp. 107–120.Google Scholar
  16. 16.
    B. A. Rozenfeld, T. A. Burtseva, N. V. Dushina, L. P. Kostrikina, and T. I. Yuchtina, “Curvature tensors of Hermitian elliptic spaces”, In:Tr. Geom. Sem., Vol. 20, Kazan Univ. Press (1989), pp 85–101.Google Scholar
  17. 17.
    V. D. Tretyakov, “Conformal interpretation of symmetric conformally Euclidean spaces”,Volzhsk. Mat. Sb.,1, 65–73 (1963).Google Scholar
  18. 18.
    V. D. Tretyakov, “Conformal interpretation of symmetric conformally Euclidean spaces”,Volzhsk. Mat. Sb.,2, 140–146 (1964).MATHGoogle Scholar
  19. 19.
    A. S. Fedenko,Spaces with Symmetries [in Russian], Byelorussian State Univ. Press, Minsk (1977).Google Scholar
  20. 20.
    A. S. Fedenko, “Spaces defined by endomorphisms of Lie groups (φ-spaces)”, In:Tr. Geom. Sem., Vol. 4, All-Union Institute for Scientific and Technical Information, Moscow (1973), pp. 231–267.Google Scholar
  21. 21.
    S. Helgason,Differential Geometry and Symmetric Spaces [Russian translation], Mir, Moscow (1964).Google Scholar
  22. 22.
    A. P. Shirokov, “Projective interpretation of conformally Euclidean symmetric spaces”, In:Proc. All-Union Third Math. Congr. [in Russian], Vol. 1, Moscow (1956), pp. 1–176.Google Scholar
  23. 23.
    A. P. Shirokov, “Constant fields of second-order vectors and tensors in Riemannian spaces”, In:Tr. Fiz.-Mat. Obshch., Vol. 25, No. 2, Kazan (1925), pp. 86–111.Google Scholar
  24. 24.
    P. A. Shirokov,Selected Works on Geometry [in Russian], Kazan Univ. Press, Kazan (1966).Google Scholar
  25. 25.
    P. A. Shirokov, “Symmetric conformally Euclidean spaces”, In:Tr. Fiz.-Mat. Obshch., Vol. 11, No. 3, Kazan (1938), pp. 9–27.Google Scholar
  26. 26.
    P. A. Shirokov, “Symmetric space of the first class”,Uchen. Zap. Kazan Univ. 114:8, 71–82 (1954).Google Scholar
  27. 27.
    P. A. Shirokov, “On one type of symmetric spaces”,Mat. Sb.,41 (83), 361–372 (1957).MATHMathSciNetGoogle Scholar
  28. 28.
    P. A. Shirokov, “Projectively Euclidean symmetric spaces”, In:Tr. Sem. Vekt. Tenz. Anal., Vol. 8 (1950), pp. 73–81.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. P. Shirokov

There are no affiliations available

Personalised recommendations