Advertisement

Annali di Matematica Pura ed Applicata

, Volume 96, Issue 1, pp 175–183 | Cite as

On the theorems of Levine and Zund

  • G. S. Hall
Article
  • 29 Downloads

Summary

Some results of Levine and Zund are extended and applied to Maxwell's theory. It is deduced that a null Maxwell field in a conformally flat space-time is necessarily expansion free and twistfree as well as shearfree. An analogous result is given for null Maxwell fields which are type N in the Petrov classification.

Keywords

Analogous Result Maxwell Field Petrov Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Lichnerowicz, Ann. di Mat. pura e appl.,50 (1960), pp. 1–95.MATHMathSciNetGoogle Scholar
  2. [2]
    A. Lichnerowicz, C.R. Acad. Sci. Paris,246 (1958), pp. 893–896.MATHMathSciNetGoogle Scholar
  3. [3]
    H. Levine -J. Zund, Ann. di Mat. pura e appl.,80 (1968), pp. 373–386.MathSciNetGoogle Scholar
  4. [4]
    J. Zund C.R. Acad. Sci. Paris,262 (1966), pp. 1081–1083.MathSciNetGoogle Scholar
  5. [5]
    H. Levine -J. Zund, C.R. Acad. Sci. Paris,264 (1967), pp. 1029–1032.MathSciNetGoogle Scholar
  6. [6]
    F. A. E. Pirani, inLectures on General Relativity, Brandeis Summer Institute in Theoretical Physics, vol. 1, Prentice Hall, 1964, Chapters 4 and 5.Google Scholar
  7. [7]
    I. Robinson, Journ. Math. Phys.,2 (1961), pp. 290–291.CrossRefGoogle Scholar
  8. [8]
    R. Debever, C.R. Acad. Sci. Paris,249 (1959), pp. 1744–1746.MATHMathSciNetGoogle Scholar
  9. [9]
    J. N. Goldberg -R. K. Sachs, Acta Phys. Polon (Supplementum),22 (1962), pp. 13–23.MathSciNetGoogle Scholar
  10. [10]
    R. K. Sachs, Proc. Roy. Soc., A264 (1961), pp. 309–338.MATHMathSciNetGoogle Scholar
  11. [11]
    L. Mariot, C.R. Acad. Sci. Paris,239 (1954), pp. 1189–1190.MATHMathSciNetGoogle Scholar
  12. [12]
    L. Mariot, C.R. Acad. Sci. Paris,241 (1955), pp. 175–176.MATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1973

Authors and Affiliations

  • G. S. Hall
    • 1
  1. 1.NewcastleEngland

Personalised recommendations