Helgoländer Meeresuntersuchungen

, Volume 33, Issue 1–4, pp 278–291 | Cite as

Mixed function oxygenases and xenobiotic detoxication/toxication systems in bivalve molluscs

  • M. N. Moore
  • D. R. Livingstone
  • P. Donkin
  • B. L. Bayne
  • J. Widdows
  • D. M. Lowe
Oil, Oil Dispersants And Related Substances

Abstract

Components of a xenobiotic detoxication/toxication system involving mixed function oxygenases are present inMytilus edulis. Our paper critically reviews the recent literature on this topic which reported the apparent absence of such a system in bivalve molluscs and attempts to reconcile this viewpoint with our own findings on NADPH neotetrazolium reductase, glucose-6-phosphate dehydrogenase, aldrin epoxidation and other reports of the presence of mixed function oxygenases. New experimental data are presented which indicate that some elements of the detoxication/toxication system inM. edulis can be induced by aromatic hydrocarbons derived from crude oil. This includes a brief review of the results of long-term experiments in which mussels were exposed to low concentrations of the water accommodated fraction of North Sea crude oil (7.7–68 µg 1−1) in which general stress responses such as reduced physiological scope for growth, cytotoxic damage to lysosomal integrity and cellular damage are considered as characteristics of the general stress syndrome induced by the toxic action of the xenobiotics. In addition, induction in the blood cells of microsomal NADPH neotetrazolium reductase (associated with mixed function oxygenases) and the NADPH generating enzyme glucose-6-phosphate dehydrogenase are considered to be specific biological responses to the presence of aromatic hydrocarbons. The consequences of this detoxication/toxication system forMytilus edulis are discussed in terms of the formation of toxic electrophilic intermediate metabolites which are highly reactive and can combine with DNA, RNA and proteins with subsequent damage to these cellular constituents. Implications for neoplasms associated with the blood cells are also discussed. Finally, in view of the increased use of mussel species in pollutant monitoring programmes, the induction phenomenon which is associated with microsomal enzymes in the blood cells is considered as a possible tool for the detection of the biological effects of environmental contamination by low concentrations of certain groups of organic xenobiotics.

Keywords

Aromatic Hydrocarbon Epoxidation General Stress Bivalve Mollusc Aldrin 

Literature cited

  1. Addison, R. F., Zinck, M. E. & Willis, D. E., 1978. Induction of hepatic mixed-function oxidase (MFO) enzymes in trout (Salvelinus fontinalis) by feeding Aroclor 1254 or 3-methylcholanthrene. — Comp. Biochem. Physiol.61C, 323–325.Google Scholar
  2. Altman, F. P., 1972. Quantitative dehydrogenase histochemistry with special reference to the pentose shunt dehydrogenases. — Prog. Histochem. Cytochem.4, 225–273.Google Scholar
  3. Barry, M. M. & Yevich, P. P., 1972. Incidence of gonadal cancer in the quahaug. — Oncology26, 87–96.PubMedCrossRefGoogle Scholar
  4. Bayne, B. L., Livingstone, D. R., Moore, M. N. & Widdows, J., 1976. A cytochemical and a biochemical index of stress inMytilus edulis L. — Mar. Pollut. Bull.7, 221–224.CrossRefGoogle Scholar
  5. Bayne, B. L., Holland, D. L., Moore, M. N., Lowe, D. M. & Widdows, J., 1978. Further studies on the effects of stress in the adult on the eggs ofMytilus edulis. — J. mar. biol. Ass. U. K.58, 825–841.CrossRefGoogle Scholar
  6. Bayne, B. L., Moore, M. N., Widdows, J., Livingstone, D. R. & Salkeld, P. N., 1979. Measurement of the responses of individuals to environmental stress and pollution. — Phil. Trans. R. Soc. (B.)286, 563–581.Google Scholar
  7. Bend, J. R., James, M. O. & Dansette, P. M., 1977. In vitro metabolism of xenobiotics in some marine animals. — Ann. N. Y. Acad. Sci.277, 505–521.Google Scholar
  8. Bresnick, E. & Yang, H.-Y., 1964. The influence of phenobarbital administration upon the “soluble” NADP-requiring enzymes in liver. — Biochem. Pharmac.13, 497–505.CrossRefGoogle Scholar
  9. Burns, K. A., 1976. Hydrocarbon metabolism in the intertidal fiddler crabUca pugnax. — Mar. Biol.36, 5–11.CrossRefGoogle Scholar
  10. Butcher, R. G. & Altman, F. P., 1973. Studies on the reduction of tetrazolium salts. II. The measurement of the half reduced and fully reduced formazans of neotetrazolium chloride in tissue sections. — Histochemie37, 351–363.CrossRefPubMedGoogle Scholar
  11. Carlson, G. P., 1972. Detoxification of foreign organic compounds by the quahaug,Mercenaria mercenaria. — Comp. Biochem. Physiol.43B, 295–302.Google Scholar
  12. Chayen, J., 1978. Microdensitometry. In: Biochemical mechanisms of liver injury. Ed by T. F. Slater. Acad. Press, London, 259–292.Google Scholar
  13. Conney, A. H. & Burns, J. J., 1972. Metabolic interactions among environmental chemicals and drugs. — Science, N. Y.178, 576–586.Google Scholar
  14. Daly, J. W., Jerina, D. M. & Witkop, B., 1972. Arene oxides and the NIH shift: the metabolism, toxicity and carcinogenicity of aromatic compounds. — Experientia28, 1129–1149.CrossRefPubMedGoogle Scholar
  15. Farley, C. A. 1969a. Sarcomatoid proliferative disease in a wild population of blue mussels(Mytilus edulis). — J. natn. Cancer Inst.43, 509–516.Google Scholar
  16. Farley, C. A., 1969b. Probable neoplastic disease of the hematopoetic system in oysters,Crassostrea virginica andCrassostrea gigas. — Natn. Cancer Inst. Monogr.31, 541–555.Google Scholar
  17. Farley, C. A. & Sparks, A. K., 1970. Proliferative diseases of hemocytes, endothelial cells, and connective tissue cells in molluscs. — Bibl. Haematol.36, 610–617.PubMedGoogle Scholar
  18. Gee, S. J., Krieger, R. I., Lim, L. O. & Wellings, S. R., 1979. Disposition processes in mussels,Mytilus californianus. — Toxic. app. Pharmac. (In press.)Google Scholar
  19. Gillette, J. R., Hinson, J. A. & Andrews, L. S., 1978. Pharmacokinetic aspects of the formation and inactivation of chemically reactive metabolites. In: Polycyclic hydrocarbons and cancer. Ed. by H. V. Gelboin & P. O. P. Ts'o. Acad. Press, London1, 375–398.Google Scholar
  20. Groves, W. E., Davies, F. C. & Sells, B. H., 1968. Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. — Ann. Biochem.22, 195–210.CrossRefGoogle Scholar
  21. Hardonk, M. J. and Koudstaal, J., 1976. Enzyme histochemistry as a link between biochemistry and morphology. — Prog. Histochem. Coytochem.8 (2), 1–68.Google Scholar
  22. Head, E. J. H., 1979. NADP-dependent isocitrate dehydrogenase in marine bivalve molluscs. Ph. D. thesis, University of Wales, 125 pp.Google Scholar
  23. Hori, S. H. & Takahashi, T., 1974. Phenobarbitol-induced increase of hexose-6-phosphate dehydrogenase activity. — Biochem. biophys. Res. Commun.61, 1064–1070.CrossRefPubMedGoogle Scholar
  24. Jeffries, H. P., 1972. A stress syndrome in the hard clam,Mercenaria mercenaria. — J. Invertebr. Pathol.20, 242–287.CrossRefGoogle Scholar
  25. Jerina, D. M. & Daly, J. W., 1974. Arene oxides: a new aspect of drug metabolism. — Science, N. Y.185, 573–582.Google Scholar
  26. Jerina, D. M., Yagi, H., Lehr, R. E., Thakker, D. R., Schaefer-Ridder, M., Karle, J. M., Levin, W., Wood, A. W., Chang, R. L. & Conney, A. H., 1978. The bay-region theory of carcinogenesis by polycyclic aromatic hydrocarbons. In: Polycyclic hydrocarbons and cancer. Ed. by H. V. Gelboin & P. O. P. Ts'o. Acad. Press, London1, 173–188.Google Scholar
  27. Jollow, D. J., Mitchell, J. R., Zampaglione, N. & Gillette, J. R., 1974. Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. — Pharmacology11, 151–169.PubMedCrossRefGoogle Scholar
  28. Khan, M. A. W., Kamal, A., Wolin, R. J. & Runnels, J., 1972.In vivo andin vitro epoxidation of aldrin by aquatic food chain organisms. — Bull. environ. Contam. Toxicol.8, 219–228.CrossRefPubMedGoogle Scholar
  29. Khandwala, A. S. & Kaspar, C. B., 1973. Preferential induction of aryl hydroxylase activity in rat liver nuclear envelope by 3-methylcholanthrene. — Biochem. biophys. Res. Commun.54, 1241.CrossRefPubMedGoogle Scholar
  30. Kimura, K., Endou, H., Sudo, J. & Saki, F., 1979. Glucose dehydrogenase (hexose-6-phosphate dehydrogenase) and the microsomal electron transport system. — J. Biochem.85, 319–326.PubMedGoogle Scholar
  31. Koudstaal, J. and Hardonk, M. J., 1969. Histochemical demonstration of enzymes related to NADPH-dependent hydroxylating systems in rat liver after phenobarbital treatment. — Histochemie23, 68–77.CrossRefGoogle Scholar
  32. Koudstaal, J. & Hardonk, M. J., 1972. Relations between biochemically determined hydroxylations and some enzyme-histochemical reactions in rat liver after phenobarbital and methylcholanthrene treatment. — Acta histochem. (Suppl.)12, 279–282.Google Scholar
  33. Krieger, R. I. & Wilkinson, C. F., 1969. Microsomal mixed-function oxidases in insects. I. Localisation and properties of an enzyme system effecting aldrin epoxidation in larvae of the southern army worm(Prodenia eridania). — Biochem. Pharmac.18, 1403–1415.CrossRefGoogle Scholar
  34. Krieger, R. I., Gee, S. J., Lim, O. L., Ross, J. H. & Wilson, A., 1979. Disposition of toxic substances in mussels(Mytilus californianus): preliminary metabolic and histologic studies. In: Pesticide and xenobiotic metabolism in aquatic organisms. Ed. by M. A. Q. Khan, J. J. Lech & J. J. Menn. American Chemical Society, Washington, D. C., 259–277.Google Scholar
  35. Kuroki, T., Huberman, E., Marquardt, H., Selkirk, J. K., Heidelberger, C., Grover, P. L. & Sims, P., 1971–1972. Binding of K-region epoxides and other derivatives of benz(a)anthracene and dibenz(a,h)-anthracene to DNA, RNA, and proteins of transformable cells. — Chem.-biol. Interact.4, 389–397.CrossRefGoogle Scholar
  36. Lee, R. F., Sauerheber, R. & Bensen, A. A., 1972. Petroleum hydrocarbons: uptake and discharge by the marine musselMytilus edulis. — Science, N. Y.177, 344–346.Google Scholar
  37. Lesko, S. A., Lorentzen, R. J. & Ts'o, P. O. P., 1978. Benzo(a)pyrene metabolism: one-electron pathways and the role of nuclear enzymes. In: Polycyclic hydrocarbons and cancer. Ed. by H. V. Gelboin & P. O. P. Ts'o. Acad. Press, London1, 261–269.Google Scholar
  38. Levin, W., Wood, A. W., Wislocki, P. G., Chang, R. L., Kapitulnick, J., Mah, H. D., Yagi, H., Jerina, D. M. & Conney, A. H., 1978. Mutagenicity and carcinogenicity of benzo(a)pyrene and benzo(a)pyrene derivations. In: Polycyclic hydrocarbons and cancer. Ed. by H. V. Gelboin & P. O. P. Ts'o. Acad. Press, London1, 189–202.Google Scholar
  39. Lindner, E. & Beyhl, F. E., 1978. Induction of microsomal drug-metabolizing enzymes caused by hexobarbital. — Experientia34, 226–227.CrossRefPubMedGoogle Scholar
  40. Livingstone, D. R., 1980. Seasonal variation in glucose-6-phosphate dehydrogenase from the mantle and digestive gland ofMytilus edulis L.: induction of enzyme activities as a mechanism for the seasonal control of metabolism in marine invertebrates (in prep.).Google Scholar
  41. Lowe, D. M. & Moore, M. N., 1978. Cytology and quantitative cytochemistry of a proliferative atypical hemocytic condition inMytilus edulis (Bivalvia, Mollusca). — J. natn. Cancer Inst.60, 1455–1459.Google Scholar
  42. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. Protein measurement with the Folin phenol reagent. — J. biol. Chem.193, 265–275.PubMedGoogle Scholar
  43. Mix, M., 1975. Proliferative characteristics of atypical cells in native oysters(Ostrea lurida) from Yaquina Bay, Oregon. — J. Invertebr. Pathol.26, 289–298.CrossRefPubMedGoogle Scholar
  44. Mix, M. C., Pribble, H. J., Riley, R. T. & Tomasovic, S. P., 1977. Neoplastic disease in bivalve mollusks from Oregon estuaries with emphasis on research in proliferative disorders in Yaquina Bay oysters. — Ann. N. Y. Acad. Sci.298, 356–373.Google Scholar
  45. Moore, M. N., 1976. Cytochemical demonstration of latency of lysosomal hydrolases in digestive cells of the common mussel,Mytilus edulis, and changes induced by thermal stress. — Cell. Tiss. Res.175, 279–287.CrossRefGoogle Scholar
  46. Moore, M. N., 1979. Cellular responses to polycyclic aromatic hydrocarbons and phenobarbital inMytilus edulis. — Mar. Environ. Res.2, 255–263.CrossRefGoogle Scholar
  47. Moore, M. N., 1980. Cytochemical determination of cellular responses to environmental stressors in marine organisms. — Rapp. P.-v. Reun. Cons. int. Explor. Mer. (In press.)Google Scholar
  48. Moore, M. N., Lowe, D. M. & Fieth, P. E. M., 1978. Lysosomal responses to experimentally injected anthracene in the digestive cells ofMytilus edulis. — Mar. Biol.48, 297–302.CrossRefGoogle Scholar
  49. Payne, J. F., 1977. Mixed function oxidases in marine organisms in relation to petroleum hydrocarbon metabolism and detection. — Mar. Pollut. Bull.8, 112–116.CrossRefGoogle Scholar
  50. Payne, J. F. & Penrose, W. R., 1975. Induction of aryl hydrocarbon (benzo(a)pyrene) hydroxylase in fish by petroleum. — Bull. environ. Contam. Toxicol.14, 112–116.CrossRefPubMedGoogle Scholar
  51. Richards, T. C., 1973. Histochemical changes in developing mouse liver after administration of phenobarbital. — Am. J. Anat.138, 449–464.CrossRefPubMedGoogle Scholar
  52. Silva-Pando, M., Carrion-Angosto, A. & Ruiz-Amil, M., 1978. Glucosa-6-fosfato dehidrogenasa de hepatopancreas de mejillon. — Rev. esp. Fisiol.34, 1–8.PubMedGoogle Scholar
  53. Sims, P. & Grover, P. L., 1974. Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis. — Adv. Cancer Res.20, 165–274.PubMedCrossRefGoogle Scholar
  54. Stegeman, J. J., 1980. Mixed-function oxygenase studies in monitoring for effects of organic pollution. — Rapp. P.-v. Réun. Cons. int. Explor. Mer. (In press.)Google Scholar
  55. Stegeman, J. J. & Klotz, A. V., 1979. A possible role for microsomal hexose-6-phosphate dehydrogenase in microsomal electron transport and mixed-function oxygenase activity. — Biochem. biophys. Res. Commun.87, 410–415.CrossRefPubMedGoogle Scholar
  56. Stegeman, J. J. & Sabo, D. J., 1976. Aspects of the effects of petroleum hydrocarbons on intermediary metabolism and xenobiotic metabolism in marine fish. In: Sources, effects and sinks of hydrocarbons in the aquatic environment. Am. Inst. Biol. Sci., Arlington, Virginia, 423–436.Google Scholar
  57. Trautman, T. D., Gee, S. J., Krieger, R. I. & Thongsinthusak, T., 1979. Sensitive radioassay of microsomal o-demethylation of14CH3O — or C3H3O-p-nitroanisole for comparative studies. — Comp. Biochem. Physiol.63C, 333–339.Google Scholar
  58. Vandermeulen, J. H. & Penrose, W. R., 1978. Absence of aryl hydrocarbon hydroxylase (AHH) in three marine bivalves. — J. Fish. Res. Bd Can.35, 643–647.Google Scholar
  59. Widdows, J., Bayne, B. L., Donkin, P., Livingstone, D. R., Lowe, D. M., Moore, M. N. & Salkeld, P. N., 1980a. Measurement of the responses of mussels to environmental stress and pollution in Sullom Voe: a baseline study. — Trans. R. Soc. Edinb. (In press.)Google Scholar
  60. Widdows, J., Bakke, T., Bayne, B. L., Donkin, P., Livingstone, D. R., Lowe, D. M., Moore, M. N., Fieth, P. E. M., Mann, S. V. & Moore, S. L., 1980b. General responses to stress inMytilus edulis following exposure to the water accomodated fraction of North Sea oil. (In prep.)Google Scholar
  61. Willis, D. E. & Addison, R. F., 1974. Hydroxylation of biphenylin vitro by tissue preparation of some marine organisms. — Comp. gen. Pharmac.5, 77–81.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1980

Authors and Affiliations

  • M. N. Moore
    • 1
  • D. R. Livingstone
    • 1
  • P. Donkin
    • 1
  • B. L. Bayne
    • 1
  • J. Widdows
    • 1
  • D. M. Lowe
    • 1
  1. 1.Natural Environment Research Council, Institute for Marine Environmental ResearchPlymouthEngland

Personalised recommendations