Helgoländer Meeresuntersuchungen

, Volume 33, Issue 1–4, pp 68–78 | Cite as

Accumulation, loss and molecular distribution of cadmium inMytilus edulis

  • N. Scholz
Heavy-Metal Pollution


InMytilus edulis, accumulation and loss of Cd were analyzed under experimental conditions. Cd uptake by the whole soft body is linear, increasing significantly with increasing Cd concentrations in the uptake medium. Until 100 µg Cd l−1, neither limitation of uptake nor any saturation process can be observed. Loss of Cd, measured after transfer of experimentally contaminated mussels to natural sea water, is exponential; biological half lives vary between 14 and 29 days. Gills are the primary sites of Cd uptake from the water, whereas in mid-gut gland, kidney, and mantle the uptake is retarded during the first few days. The mid-gut gland not only bears the main body load of Cd, but also shows the highest Cd concentrations. Gel chromatographic studies of mid-gut gland proteins reveal that Cd is eluated over the whole molecular weight range. Three metallothionein-like proteins with molecular weights of 6,600, 13,200, and 21,000 Dalton could be established. However, they cannot be taken as effective detoxification proteins, because more than 50% of the accumulated metal is bound to high molecular weight proteins.


Molecular Weight Protein Biological Half Life Uptake Medium Saturation Process Molecular Weight Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. Friberg, L., Piscator, H., Nordberg, G. F. & Kjellström, T., 1976. Cadmium in the environment. CRC-Press, Cleveland, Ohio, 248 pp.Google Scholar
  2. George, S. G. & Coombs, T. L., 1977. The effects of chelating agents on the uptake and accumulation of cadmium byMytilus edulis. — Mar. Biol.39, 261–268.CrossRefGoogle Scholar
  3. Howard, A. G. & Nickless, G., 1977. Heavy metal complexation in polluted molluscs. I. Limpets (Patella vulgata andPatella intermedia). — Chem.- biol. Interact.16, 107–114.CrossRefPubMedGoogle Scholar
  4. Janssen, H. H. & Scholz, N., 1979. Uptake and cellular distribution of cadmium inMytilus edulis. — Mar. Biol.55, 133–141.CrossRefGoogle Scholar
  5. Kägi, J. H. R. & Vallee, B. L., 1960. Metallothionein: a cadmium and zinc containing protein from equine renal cortex. — J. biol. Chem.235, 3460–3465.PubMedGoogle Scholar
  6. Karbe, L., 1972. Marine Hydroiden als Testorganismen zur Prüfung der Toxizität von Abwasserstoffen. Die Wirkungen von Schwermetallen auf Kolonien vonEirene viridula. — Mar. Biol.12, 316–328.CrossRefGoogle Scholar
  7. Noel-Lambot, F., 1976. Distribution of cadmium, zinc, and copper in the musselMytilus edulis. Existence of cadmium-binding proteins similar to metallothionein. — Experientia32, 324–326.CrossRefGoogle Scholar
  8. Noel-Lambot, F., 1979. Cadmium accumulation correlated with increase in metallothionein concentration in the limpetPatella caerulea. In: Animals and environmental fitness. Reprints of abstracts. Ed. by R. Gilles. Pergamon Press, Oxford, 83–84.Google Scholar
  9. Noel-Lambot, F., Bouquegneau, J. M., Frankenne, F., & Disteche, A., 1978. Le role metallothioneines dans le stockage des métaux lourds chez les animaux marins. — Revue int. Océanogr. méd.44, 13–20.Google Scholar
  10. Olafson, R. W. & Thompson, J. A. J., 1974. Isolation of heavy metal binding proteins from marine vertebrates. — Mar. Biol.28, 83–86.CrossRefGoogle Scholar
  11. Overnell, J., Davidson, J. A. & Coombs, T. L., 1977. A cadmium binding glycoprotein from the liver of the plaice(Pleuronectes platessa). — Biochem. Soc. Trans.5, 267–269.PubMedGoogle Scholar
  12. Phillips, D. J. H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments — a review. — Environ. Pollut.13, 281–317.CrossRefGoogle Scholar
  13. Probst, G. S., Bousquet, W. T. & Miya, T. S., 1977. Correlation of metallothionein concentrations with acute cadmium toxicity in the mouse. — Toxic. appl. Pharmac.39, 61–69.CrossRefGoogle Scholar
  14. Schulz-Baldes, M., 1974. Lead uptake from sea water and food, and lead loss in the common mussel,Mytilus edulis. — Mar. Biol.25, 177–193.CrossRefGoogle Scholar
  15. Squibb, K. S., Cousins, R. J., Silbon, B. L. & Levin, S., 1976. Liver and intestinal metallothionein: function in acute cadmium toxicity. — Exp. mol. Path.25, 163–171.CrossRefGoogle Scholar
  16. Tanaka, K., Sueda, K., Onosaka, S. & Okahara, K., 1975. Fate of109Cd-labelled metallothionein in rats. — Toxic. appl. Pharmac.33, 258–266.CrossRefGoogle Scholar
  17. Theede, H., Andersson, I. & Lehnberg, W., 1979a. Cadmium inMytilus edulis from German coastal waters. — Meeresforsch.27, 147–155.Google Scholar
  18. Theede, H., Scholz, N. & Fischer, H., 1979b. Temperature and salinity effects on the acute toxity of cadmium toLaomedea loveni (Hydrozoa). — Mar. Ecol. Prog. Ser.1, 13–19.Google Scholar
  19. Webb, M., 1975. Metallothionein and the toxicity of cadmium. In: Ecological toxicology research. Ed. by A. D. McIntyre & C. F. Mills. Plenum Press, New York, 177–186.Google Scholar
  20. Wolf, P. de, 1975. Mercury content of mussels from West European coasts. — Mar. Pollut. Bull.6, 61–63.CrossRefGoogle Scholar
  21. Wright, D. A., 1977. The effect of calcium on cadmium uptake by the shore crabCarcinus maenas. — J. exp. Biol.67, 163–173.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1980

Authors and Affiliations

  • N. Scholz
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKiel 1Germany

Personalised recommendations