Annali di Matematica Pura ed Applicata

, Volume 56, Issue 1, pp 301–311 | Cite as

Integrals involving products of bessel functions

  • F. M. Ragab


The integrals\(\int\limits_0^\infty {e^{ - \lambda } \lambda ^{k - 1} K_v (\lambda )K_\mu \left( {x\lambda ^{ \pm \tfrac{1}{n}} } \right)} d\lambda \) and\(\int\limits_0^\infty {e^{ - \lambda } \lambda ^{k - 1} K_v (\lambda )J_\mu \left( {2x\lambda ^{ \pm \tfrac{1}{n}} } \right)} d\lambda \), where n is any positive integer, are evaluated in terms ofMacRobert E-functions and generalized hypergeometric functions.


Positive Integer Bessel Function Hypergeometric Function Generalize Hypergeometric Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    MacRobert, T. M.,Functions of a complex Variable, (4th edit), London, (1954).Google Scholar
  2. [2]
    R. K. Saxena,Integrals involving E-functions, « Proc. Glasgow Math, Assoc. », Vol. (4), pag. 182 (1959).Google Scholar

Copyright information

© Nicola Zanichelli Editore 1961

Authors and Affiliations

  • F. M. Ragab
    • 1
  1. 1.CairoEgitto

Personalised recommendations