Acta Mathematica

, Volume 145, Issue 1, pp 155–176 | Cite as

A class of specialL α spaces

  • J. Bourgain
  • F. Delbaen


Banach Space Compact Operator Vector Measure Finite Dimensional Subspace Orlicz Sequence Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bessaga, C. &Pelczynski, A., On bases and unconditional convergence of series in Banach spaces.Studia Math., 17 (1958), 151–164.MATHMathSciNetGoogle Scholar
  2. [2]
    Bourgain, J. & Rosenthal, H., Geometrical implications of certain finite dimensional decompositions. To appear.Google Scholar
  3. [3]
    Davis, W. J., Figiel, T., Johnson, W. B. &Pelczynski A., Factoring weakly compact operators.J. Functional Analysis, 17 (1974), 311–327.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Dean, D., Singer, I. &Sternbach, L., On shrinking basic sequences in Banach spaces.Studia Math., 40 (1971), 23–33.MATHMathSciNetGoogle Scholar
  5. [5]
    Diestel, J. & Uhl, J. J.,Vector Measures. American Mathematical Society, Mathematical Surveys, 15 (1977).Google Scholar
  6. [6]
    Grothendieck, A., Sur les applications linéaires faiblement compactes d'espaces du typeC(K).Canad. J. Math., 5 (1953), 129–173.MATHMathSciNetGoogle Scholar
  7. [7]
    James, R. C., Uniformly non square Banach spaces.Ann. of Math., 80 (1964), 542–550.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Kadec, M. I. &Pelczynski, A., Bases, lacunary sequences and complemented subspaces inL p.Studia Math., 21 (1962), 161–176.MATHMathSciNetGoogle Scholar
  9. [9]
    Lewis, D. &Stegall, C., Banach spaces whose duals are isomorphic tol 1(T)J. Functional Analysis, 12 (1971), 177–187.CrossRefMathSciNetGoogle Scholar
  10. [10]
    Lindenstrauss, J., Extension of compact operators.Mem. Amer. Math. Soc., 48 (1964).Google Scholar
  11. [11]
    Lindenstrauss, J. &Pelczynski, A., Absolutely summing operators inL p spaces and their applications.Studia Math., 29 (1968), 275–326.MATHMathSciNetGoogle Scholar
  12. [12]
    Lindenstrauss, J. &Rosenthal, H. P., TheL p spaces.Israel J. Math., 7 (1969), 325–349.MATHMathSciNetGoogle Scholar
  13. [13]
    Lindenstrauss, J. & Tzafriri, L.,Classical Banach spaces. Springer Lectures Notes in Mathematics, 338 (1973).Google Scholar
  14. [14]
    —,Classical Banach spaces I. Ergebnisse der Mathematik and Ihrer Grenzgebiete 92, Springer, Berlin, 1977.MATHGoogle Scholar
  15. [15]
    Rosenthal, H. P., A characterization of Banach spaces containingl 1.Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 2411–2413.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Singer, I.,Bases in Banach spaces I. Springer Verlag Berlin 1970.MATHGoogle Scholar
  17. [17]
    Zippin, M., On some subspaces of Banach spaces whose duals areL 1 spaces.Proc. Amer. Math. Soc., 23 (1969), 378–385.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1980

Authors and Affiliations

  • J. Bourgain
    • 1
  • F. Delbaen
    • 1
  1. 1.Vrije UniversiteitBrusselBelgium

Personalised recommendations