Advertisement

Trasporto di neutroni con sezioni d'urto dipendenti dalla temperatura

  • A. Belleni-Morante
Article

Riassunto.

Si studia un problema non lineare di trasporto di neutroni in un muro omogeneo con sezioni d'urto dipendenti dalla temperatura. Facendo uso di alcune tecniche standard della teoria delle equazioni non lineari di evoluzione, si prova l'esistenza e l'unicità di una soluzione forte u=u(t), per ogni t ∈ [0,\(\bar t\)], ove\(\bar t\) è scelto in modo opportuno. Infine, si indica un procedimento per determinare una funzione continua e non negativa b=b(t), tale che ‖u(t)‖⩽b(t) per ogni t ∈ [0,\(\bar t\)].

Summary

We study a non-linear neutron transport problem in a homogeneous slab with temperature feedback. By using some standard techniques from the theory of non-linear evolution equations, we prove existence and uniqueness of a strong solution u=u(t) at any t ∈ [0,\(\bar t\)]. Finally, we indicate a procedure to find a non-negative continuous b=b(t), such that ‖u(t)‖⩽b(t), at any t ∈ [0,\(\bar t\)].

Bibliografia

  1. [1]
    D. H. Nguyen, Nucl. Sci. Eng.,55 (1974), p. 307.Google Scholar
  2. [2]
    D. H. Nguyen, Nucl. Sci. Eng.,52 (1973), p. 292.Google Scholar
  3. [3]
    D. H. Nguyen, Nucl. Sci. Eng.,50 (1973), p. 370.Google Scholar
  4. [4]
    D. B. Reister -P. L. Chambré, Nucl. Sci. Eng.,48 (1972), p. 211.Google Scholar
  5. [5]
    E. T. Dean -P. L. Chambré, SIAM J. Appl. Math.,20 (1971), p. 722.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    R. M. Crawford -W. E. Kastemberg, Trans. Amer. Nucl. Soc.,12 (1969), p. 241.Google Scholar
  7. [7]
    M. H. Millman -J. B. Keller, J. Math. Phys.,10 (1969), p. 348.CrossRefMathSciNetGoogle Scholar
  8. [8]
    W. E. Kastemberg, Trans. Amer. Nucl. Soc.,11 (1968), p. 224.Google Scholar
  9. [9]
    C. Hsu, Trans. Amer. Nucl. Soc.,11 (1968), p. 223.Google Scholar
  10. [10]
    W. E. Kastember -P. L. Chambré, Nucl. Sci. Eng.,31 (1968), p. 67.Google Scholar
  11. [11]
    F. E. Browder, Annals of Math.,80 (1964), p. 485.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    T. Kato, Proc. Symp. Appl. Math.,17 (1965), p. 50.zbMATHGoogle Scholar
  13. [13]
    I. Segal, Annals of Math.,78 (1963), p. 339.CrossRefzbMATHGoogle Scholar
  14. [14]
    T. Kato, J. Math. Soc. Japan,19 (1967), p. 508.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    C. V. Pao, Arch. Rat. Mech. Anal.,35 (1969), p. 16.zbMATHMathSciNetGoogle Scholar
  16. [16]
    C. V. Pao -G. Vogt, Arch. Rat. Mech. Anal.,35 (1969), p. 30.MathSciNetzbMATHGoogle Scholar
  17. [17]
    C. V. Pao, J. Math. Anal. Appl.,42 (1973), p. 578.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    V. Barbu,Semigrupuri de Contractii Neliniare in Spatii Banach, Editura Academiei Republicii Socialiste Romania, Bucuresti (1974).Google Scholar
  19. [19]
    G. I. Bell -S. Glasstone,Nuclear Reactor Theory, Van Nostrand Reinhold Company, New York (1970).Google Scholar
  20. [20]
    V. Boffi,Fisica del Reattore Nucleare, Pàtron, Bologna (1974).Google Scholar
  21. [21]
    G. M. Wing,An Introduction to Transport Theory, J. Wiley, New York (1962).Google Scholar
  22. [22]
    T. Kato,Perturbation Theory for Linear Operators, Springer, New York (1966).zbMATHGoogle Scholar
  23. [23]
    A. Suhadolc, J. Math. Anal. Appl.,35 (1971), p. 1.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    A. Belleni-Morante, J. Math. Anal. Appl.,47 (1974), p. 443.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • A. Belleni-Morante
    • 1
  1. 1.Firenze

Personalised recommendations